화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.102, 112-121, October, 2021
Catalytic hydrocracking of vacuum residue in a semi-batch reactor: Effect of catalyst concentration on asphaltene conversion and product distribution
E-mail:
Slurry phase hydrocracking of vacuum residue at various catalyst concentrations was performed in a semi-batch reactor to investigate the effect of catalyst concentration on the reaction performance. The secondary cracking reaction was dominant at high-residue conversion (>60 wt%) without the catalyst but it was suppressed by the catalyst. Moreover, the conversion of asphaltenes at high-residue conversions was found to be dependent on the catalyst concentration. At low catalyst concentrations (0-100 ppm), asphaltenes were converted to light products at low-residue conversions and to coke at high-residue conversions. At high catalyst concentrations (100-500 ppm), asphaltenes were mainly converted to light products even at high conversions. Based on the experimental results, equations for the onset of coke formation with respect to the catalyst concentration were proposed. The higher the catalyst concentration, the longer was the coke induction period. A kinetic model was also proposed, and the experimental data could be predicted well using the same. The transformation of residue to coke was dominant in the non-catalytic hydrocracking and the coke formation rate significantly decreased as the catalyst concentration increased.
  1. Groenzin H, Mullins OC, Asphaltenes, Heavy Oils, and Petroleomics, Springer, 2007.
  2. Ancheyta J, Trejo F, Rana MS, Asphaltenes Chemical Transformation during Hydroprocessing of Heavy Oils, CRC Press - Taylor & Francis Group, 2009.
  3. Rana MS, Samano V, Ancheyta J, Diaz JAI, Fuel, 86(9), 1216 (2007)
  4. Angeles MJ, Leyva C, Ancheyta J, Ramirez S, Catal. Today, 220-222, 274 (2014)
  5. Nguyen MT, Nguyen NT, Cho J, Park C, Park S, Jung J, Lee CW, J. Ind. Eng. Chem., 43, 1 (2016)
  6. Stratiev D, Nenov S, Shishkova I, Georgiev B, Argirov G, Dinkov R, Yordanov D, Atanassova V, Vassilev P, Atanassov K, ACS Omega, 51, 33290 (2020)
  7. Lim SH, Go KS, Nho NS, Lee JG, Fuel, 234, 305 (2018)
  8. Panariti N, Del Bianco A, Del Piero G, Marchionna M, Appl. Catal. A: Gen., 204(2), 203 (2000)
  9. Panariti N, Del Bianco A, Del Piero G, Marchionna M, Carniti P, Appl. Catal. A: Gen., 204(2), 215 (2000)
  10. Liu D, Li M, Deng W, Que G, Energy Fuels, 24, 1958 (2010)
  11. Du H, Li N, Liu D, Ren Y, Duan Y, Appl. Petrochem. Res., 5, 89 (2015)
  12. Du H, Liu D, Li M, Wu PP, Yang YX, Energy Fuels, 29(2), 626 (2015)
  13. Kang KH, Nguyen NT, Seo PW, Seo H, Kim GT, Kang N, Lee CW, Han SJ, Chung MC, Park S, J. Catal., 384, 106 (2020)
  14. Nguyen NT, Kang KH, Seo PW, Kang N, Pham DV, Kim GT, Park S, Pet. Chem., 61(2), 172 (2021)
  15. Martinez-grimaldo H, Otiz-moreno H, Sanchez-minero F, Ramirez J, Cuevas-garcia R, Ancheyta J, Catal. Today, 220-222, 295 (2014)
  16. Ortiz-Moreno H, Ramirez J, Cuevas R, Marroquin G, Ancheyta J, Fuel, 100, 186 (2012)
  17. Prajapati R, Kohli K, Maity SK, Fuel, 239, 452 (2019)
  18. Nguyen NT, Kang KH, Seo PW, Kang N, Pham DV, Ahn C, Kim GT, Park S, Energies, 13, 4444 (2020)
  19. Ortiz-Moreno H, Ramirez J, Sanchez-Minero F, Cuevas R, Ancheyta J, Fuel, 130, 263 (2014)
  20. Go KS, Lim SH, Kim YK, Kwon EH, Nho NS, Catal. Today, 305, 92 (2018)
  21. Nguyen NT, Park SY, Jung JH, Cho JM, Lee CW, Park YK, J. Ind. Eng. Chem., 61, 32 (2018)
  22. Nguyen NT, Kang KH, Lee CW, Kim GT, Park S, Park YK, Fuel, 235, 677 (2019)
  23. Raseev S, Thermal and catalytic processes in petroleum refining, Marcel Dekker, Inc., New York, Basel, 2003.
  24. Asaee SDS, Vafajoo L, Khorasheh F, Fuel, 134, 343 (2014)
  25. Du H, Liu D, Liu H, Gao P, Lv RQ, Li M, Lou B, Yang YX, Energy Fuels, 29(4), 2104 (2015)
  26. Felix G, Ancheyta J, Fuel, 241, 495 (2019)
  27. Al-Marshed A, Hart A, Leeke G, Greaves M, Wood J, Ind. Eng. Chem. Res., 54(43), 10645 (2015)
  28. Stanislaus A, Hauser A, Marafi M, Catal. Today, 109(1-4), 167 (2005)
  29. Rezaei H, Smith KJ, Energy Fuels, 27(10), 6087 (2013)
  30. Kazemzadeh Y, Parsaei R, Riazi M, Colloids Surf. A: Physicochem. Eng. Asp., 466, 138 (2015)
  31. Zanganeh P, Dashti H, Ayatollahi S, Fuel, 217, 633 (2018)
  32. Pham HH, Nguyen NT, Go KS, Park S, Nho NS, Kim GT, Lee CW, Felix G, Catal. Today, 353, 112 (2020)
  33. Pham HH, Kim KH, Go KS, Nho NS, Kim W, Kwon EH, Jung RH, Lim Y, Lim SH, Pham DA, J. Petro. Sci. Eng., 197 (2021)
  34. Sanchez S, Rodriguez MA, Ancheyta J, Ind. Eng. Chem. Res., 44(25), 9409 (2005)
  35. Alvarez P, Browning B, Jansen T, Lacroix M, Geantet C, Pitault I, Tayakout-Fayolle M, Fuel Process. Technol., 185, 68 (2019)
  36. Buch L, Groenzin H, Buenrostro-Gonzalez E, Andersen SI, Lira-Galeana C, Mullins OC, Fuel, 82(9), 1075 (2003)