화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.102, 146-154, October, 2021
Understanding of Si3N4-H3PO4 reaction chemistry for the control of Si3N4 dissolution kinetics
E-mail:
This work proposes the mechanism of the silicon nitride (Si3N4) dissolution reaction in phosphoric acid (H3PO4) solution and shows how to kinetically control the reaction. The various H3PO4 concentrations and temperature dependencies of Si3N4 dissolution rates and the behavior of Si3N4 dissolution with different acids were investigated. First, the dissolution of Si3N4 in H3PO4 begins with an SN1-like process composed of an NH2-leaving step from Si and an H2PO4-coupling step. Next, an SN2-like reaction occurs, in which N-Si of N-Si-H2PO4 is broken by H2O and replaced with Si-OH. The latter SN2 like reaction is thought to determine the overall dissolution rate of Si3N4. When a weak nucleophile, such as H2PO4 -, is coupled with Si, the rate of the SN2-like reaction increases where the Si-N of the backbone of Si3N4 is broken. From the reaction rate based on those reaction mechanisms, the overall dissolution rate of Si3N4 is determined by the product of the H3PO4 and H2O concentrations, and that two different concentrations of H3PO4 produce identical dissolution rates at a given temperature. It is also indicated that the Si3N4 dissolution rate compared to the SiO2 dissolution rate is higher at a lower concentration of the two H3PO4 solutions.
  1. Morosanu CE, Iosif D, Segal E, Thin Solid Films, 92, 333 (1982)
  2. Jiang JZ, Kragh F, Frost DJ, Stahl K, Lindelov H, J. Phys.: Condens. Matter, 13, 1515 (2001)
  3. Julian MM, Gibbs GV, J. Phys. Chem., 89, 5476 (1985)
  4. Grill A, Aron PR, Thin Solid Films, 96, 25 (1982)
  5. Herrmann H, J. Am. Ceram. Soc., 96, 3009 (2013)
  6. Seidel H, Csepregi L, Heubeger A, Baumgartel H, J. Electrochem. Soc., 137, 3612 (1990)
  7. Knotter DM, Denteneer TJJ, J. Electrochem. Soc., 148(3), F43 (2001)
  8. Sundaram KB, Sah RE, Baumann H, Balachandran K, Todi RM, Microelectron. Eng., 70, 109 (2003)
  9. Gelder WV, Hauser VE, J. Electrochem. Soc., 114, 869 (1967)
  10. Cho S, Lee Y, Han J, PArk H, Kim H, Kwak S, Yang K, Hong K, Park S, Kang H, ECS Trans., 45, 251 (2012)
  11. Seo D, Bae J, Oh E, Kim S, Lim S, Microelectron. Eng., 118, 66 (2014)
  12. Kim T, Son C, Park T, Lim S, Microelectron. Eng., 221 (2020)
  13. Son C, Lim S, ECS J. Solid State Sci. Technol., 8, N85 (2019)
  14. Danforth WE, Phys. Rev., 38, 1224 (1931)
  15. Awwad AM, Al-Dujaili AH, Salman HE, J. Chem. Eng. Data, 47(3), 421 (2002)
  16. Fawcett WR, Mol. Phys., 86, 715 (1995)
  17. Liu L, Michalak DJ, Chopra TP, Pujari SP, Cabrera W, Dick D, Veyan J, Hourani R, Halls MD, Zuilhof H, Chabal YJ, J. Phys.: Condens. Matter, 28 (2016)
  18. Brunet M, Aureau D, Chantraine P, Guillemot F, Etcheberry A, Gouget-Laemmel AC, Ozanam F, A.C.S. Appl, Mater. Interfaces, 9, 3075 (2017)
  19. Karandashev K, Xu Z, Meuwly M, Vanicˇek J, Richardson JO, Struct. Dyn., 4 (2017)
  20. Westaway KC, Adv. Phys. Org. Chem., 41, 217 (2006)
  21. Reinhardt KA, Reidy RF, Handbook of Cleaning for Semiconductor Manufacturing: Fundamentals and Applications, John Wiley & Sons, Hoboken, 2011.
  22. Brinker CJ, Scherer GW, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, first ed., Academic Press, New York, 1990.
  23. Yin L, Farimani AB, Min K, Vishal N, Lam J, Lee YK, Aluru NR, Rogers JA, Adv. Mater., 27(11), 1857 (2015)
  24. Holmes RR, Chem. Rev., 96(3), 927 (1996)
  25. Johnson SE, Deiters JA, Day RO, Holmes RR, J. Am. Chem. Soc., 111, 3250 (1989)
  26. Lide DR, CRC Handbook of chemistry and physics, internet version 2005, CRC Press, Florida, 2005.
  27. Maskill H, J. Chem. Soc., Chem. Commun., 18, 1433 (1986).
  28. Buckley N, Oppenheimer NJ, J. Org. Chem., 62, 540 (1997)
  29. Phan TB, Nolte C, Kobayashi S, Ofial AR, Mayr H, J. Am. Chem. Soc., 131(32), 11392 (2009)
  30. Davis ME, Davis RJ, Fundamentals of chemical reaction engineering, international ed., The McGraw-Hill Companies, New York, 2012.
  31. Egan EP, Luff BB, Ind. Eng. Chem., 47, 1280 (1955)
  32. Knotter DM, J. Am. Chem. Soc., 122(18), 4345 (2000)