화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.10, 2134-2140, October, 2021
Oxygen-vacancy-rich spinel CoFe2O4 nanocrystals anchored on cage-like carbon for high-performance oxygen electrocatalysis
E-mail:,
We report spinel-type CoFe2O4 nanocrystals (NCs) synthesized through facile hydrothermal growth and their attachment on a cage-like carbon (CC) for efficient and durable oxygen evolution/reduction reaction (OER/ORR) performance. As a catalyst, the so-constructed CoFe2O4 NCs show significantly higher OER performance than bare CoFe2O4 and CC, leading to an overpotential of 1.59 V for the OER at a current density of 10mA/cm. Furthermore, CoFe2O4 NCs on CC electrodes also exhibit good ORR performance, which is comparable to Pt/C, significantly higher than that of bare carbon fiber paper, and acts as a bifunctional electrocatalyst. The CoFe2O4 NCs anchored on the CC electrodes exhibit remarkably long-term stability, which is evaluated by continuous cycling (over 5,000 cycles), without any morphological change, but preserving all the materials within the electrode. The results indicate that the CoFe2O4 NCs have a promising potential for efficient, cost-effective, and durable oxygen electrocatalysis at large scales using earth-abundant materials and low-cost fabrication processes.
  1. Ma TY, Wu SY, Wang F, ACS Appl. Mater. Interfaces, 50, 56086 (2020)
  2. Zou KY, Li N, Chen YZ, Sun JJ, ACS Appl. Nano Mater., 6, 5732 (2020)
  3. Liu QY, Yi XY, Han X, Fire Technol., 56, 2509 (2020)
  4. Tammam RH, Fekry AM, Saleh MM, Korean J. Chem. Eng., 11, 1932 (2019)
  5. Zhan Y, Xu CH, Lee JY, J. Mater. Chem. A, 2, 16217 (2014)
  6. Muthurasu A, Dahal B, Kim HY, ACS Appl. Mater. Interfaces, 37, 41704 (2020)
  7. Davari E, Ivey DG, Sustain. Energy Fuels, 2, 39 (2018)
  8. Shinde SS, Lee CH, Lee JH, ACS Nano, 1, 347 (2017)
  9. Yang SX, Yu YH, Dou ML, Angew. Chem.-Int. Edit., 41, 14866 (2019)
  10. Sharma L, Gond R, Barpanda P, ACS Catal., 1, 43 (2020)
  11. Ren JT, Yuan ZY, ACS Sustain. Chem. Eng., 11, 11121 (2019)
  12. Lee DU, Xu P, Chen ZW, J. Mater. Chem. A, 4, 7107 (2016)
  13. Fritz KE, Yan YC, Suntivich J, Nano Res., 12, 2307 (2019)
  14. Wang DD, Chen X, Yang WS, Nanoscale, 5, 5312 (2013)
  15. Tammam RH, Fekry AM, Saleh MM, Korean J. Chem. Eng., 36(11), 1932 (2019)
  16. Takimoto D, Fukuda K, Sugimoto W, Electrocatalysis, 8, 144 (2017)
  17. He QM, Kun R, Wen ZY, ACS Appl. Mater. Interfaces, 9, 36927 (2017)
  18. Bian WY, Yang ZR, Strasser P, Yang RZ, J. Power Sources, 250, 196 (2014)
  19. Yin J, Shen L, Xi PX, J. Mater. Res., 33, 590 (2018)
  20. Wang CP, Su H, Zhang JM, ACS Appl. Mater. Interfaces, 10, 28679 (2018)
  21. Wu HB, Lou XW, Sci. Adv., 3, 9252 (2017)
  22. Fan HS, Zhang YF, Xu J, Nano Energy, 33, 168 (2017)
  23. Kim JG, Noh Y, Lee S, Nanoscale, 9, 5119 (2017)
  24. Alireza K, Serdar Y, Prabhakar RB, ACS Appl. Mater. Interfaces, 7, 17851 (2015)
  25. Wu ZX, Wu HB, Jin W, ACS Sustain. Chem. Eng., 24, 9226 (2020)
  26. Liu CJ, Zhang ZC, Guo GJ, RSC Adv., 6, 106443 (2016)
  27. Chee KN, Ren WT, Wu J, Chem. Sci., 10, 1549 (2019)
  28. Bing YF, Zeng Y, Zheng WT, Nanoscale, 7, 3276 (2015)
  29. Nazir A, Hussein AY, Francis V, Chem. Soc. Rev., 44, 9 (2015)
  30. Martin R, Martin GN, Nico B, Chem. Soc. Rev., 45, 6213 (2016)
  31. Marco B, Raul PS, Maciej, Mol. Syst. Des. Eng., 4, 912 (2019)
  32. Wang HG, Liu DP, Duan Q, Mater. Lett., 172, 64 (2016)
  33. Xie K, Qin XT, Wang XZ, Wang YN, Tao HS, Wu Q, Yang LJ, Hu Z, Adv. Mater., 24(3), 347 (2012)
  34. Kargar A, Yavuz S, Kim TK, ACS Appl. Mater. Interfaces, 32, 17851 (2015)
  35. He QM, Rui K, Chen CH, ACS Appl. Mater. Interfaces, 42, 36927 (2017)
  36. Praveena K, Bououdina M, J. Electron. Mater., 49, 6187 (2020)
  37. Abbott LJ, Colina CM, J. Chem. Eng. Data, 10, 3177 (2014)
  38. Safran S, Bulut F, Nefrow ARA, J. Mater. Sci., 31, 20578 (2020)
  39. Verma B, Balomajumder C, Korean J. Chem. Eng., 37(7), 1157 (2020)
  40. Georgioua Y, Papadas IT, Armatas GS, Environ. Sci.: Nano, 6, 1156 (2019)
  41. Ding Y, Zhao J, Yang FC, ACS Appl. Energy Mater., 2, 1026 (2019)
  42. Wang X, Zhuang LZ, Yuan P, Chem. Res. Chinese U., 36, 479 (2020)
  43. Saha M, Ghosh S, Paul S, Dalal B, De SK, ChemistrySelect, 3, 6654 (2018)
  44. Chen T, Meng J, Lin Q, Wei X, Li J, Zhang Z, J. Alloy. Compd., 780, 798 (2019)
  45. Li S, Wang M, Li C, Liu J, Xu M, Liu J, Zhang J, Sci. China Mater., 61, 1085 (2018)
  46. Lavorato G, Lima E, Winkler E, J. Phys. Chem. C, 5, 3047 (2018)
  47. Guo D, Wang J, Zhang L, Chen X, Wan Z, Xi B, Small, 2002432 (2020).
  48. Zhang SL, Guan BY, Lu XF, Xi S, Du Y, Lou XW, Adv. Mater., 32, 200223 (2020)