Polymer(Korea), Vol.45, No.5, 742-747, September, 2021
Star형 Poly(ε-caprolactone) 합성과 약물 전달체로 응용
Synthesis of Star-shaped Poly(ε-caprolactone) and Its Application to Drug Delivery Material
E-mail:
초록
Poly(ε-caprolactone)(PCL)을 분자 내 OH기의 수가 1, 3, 4개인 아민 화합물을 개시제로 사용하여 PCL 벌크 중합 및 용액중합을 실시, 선형 및 star형 PCL을 합성하였다. 벌크중합으로 선형 PCL을 중합한 경우 [CL]/[I] 비가 크면 분자량과 녹는점이 증가하였다. 또한 개시제의 OH기 수가 증가하면 분자량과 녹는점이 감소하였다. 용액중합의 경우 개시제의 OH기 수가 증가하면 벌크중합과 반대로 분자량과 녹는점이 증가하였다. 얻어진 선형 및 star형 PCL을 이용, bovine serum albumin(BSA) 로딩된 마이크로입자를 제조하였다. 로딩분율은 선형 PCL이 star PCL보다 컸으며 4가지형 PCL이 3가지형 PCL보다 작았다. 약물 방출속도는 선형보다 star형 PCL이 느리게 방출되었고 가지가 많은 star PCL이 상대적으로 더 느렸다.
Poly(ε-caprolactone) (PCL) were prepared using amines with 1, 3 or 4 OH groups to synthesize linear and star PCL via bulk and solution polymerization. For bulk polymerization of PCL, the molecular weight (MW) and melting point (m.p.) increased as the [CL]/[I] ratio increased. In addition, as the number of OH groups of the initiators increased, the MW and m.p. decreased. For solution polymerization of PCL, as the number of OH groups of an initiator increased, the MW and m.p. increased as opposed to bulk polymerization. Microparticles loaded with bovine serum albumin (BSA) were successfully prepared with PCL. The loading % of BSA in microparticle prepared with linear PCL was larger than that of star PCL, and the three branched PCL showed smaller BSA loading than that of four branched PCL. The drug release rate was slower for star PCL than linear PCL, and relatively slower for star PCL with many branches.
Keywords:biodegradable polymer;poly(ε-caprolactone);drug delivery system;microparticle;amine initiator
- Boudoulas KD, Triposkiadis F, Stefanadis C, Boudoulas H, Hellenic J. Cardiol., 58, 322 (2017)
- Park J, Ye M, Park K, Molecules, 10, 146 (2005)
- Hwang TH, Kim JB, Yang DS, Park Y, Ryu WH, J. Micromech. Microeng., 23, 1 (2013)
- Freiberg S, Zhu XX, Int. J. Pharm., 282, 1 (2004)
- Altman PA, Catheter Drug Delivery System and Method for use. US patent 6,726,662 B2, 2004.
- Masood F, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 60, 569 (2016)
- Jalil R, Nixon JR, J. Microencapsulation, 7, 297 (1990)
- Shi C, Feng S, Liu X, Feng X, Fu DA, J. Biomater. Sci.-Polym. Ed., 27, 854 (2016)
- Cui Y, Ma X, Tang X, Luo Y, Eur. Polym. J., 40, 299 (2004)
- Chen DR, Bei JZ, Wang SG, Polym. Degrad. Stabil., 47, 455 (2000)
- Ray AML, Gautier H, Laty MK, Daculsi G, Merie C, Jacqueline C, Hamel A, Caillon J, Antimicrob. Agents Chemother., 49, 3025 (2005)
- Danafar H, Cogent Med., 3, 114241 (2016)
- Zhang H, Cui W, Bei J, Wang S, Polym. Degrad. Stabil., 91, 1929 (2006)
- Wang F, Bronich TK, Kabanov AV, Rauh RD, Roovers J, Bioconjugate Chem., 16, 197 (2005)
- Zhou S, Deng X, Yang H, Biomaterials, 24, 3563 (2003)
- Labet M, Thielemans W, Chem. Soc. Rev., 38, 3484 (2009)
- Huang HM, Yang SJ, Polymer, 46(19), 8068 (2005)