- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.45, No.5, 803-808, September, 2021
PVDF/CNT 복합체의 CNT 분산성 향상을 위한 Pyrene 기반 고분자 분산제
Pyrene-based Polymer Surfactant for Dispersion of CNT in the PVDF/CNT Nanocomposite
E-mail:
초록
고함량 탄소나노튜브(CNT)를 함유한 poly(vinylidene fluoride)(PVDF)/carbon nanotube(CNT) 나노복합체의 CNT 분산성 향상을 위해 poly(PyMMP-co-MMA)(PyMMP: 1-pyrenemethyl methacrylate, MMA: methyl methacrylate)를 중합하여 분산제로 사용하였다. Poly(PyMMP(20 mole%)-co-MMA) (CNT 대비 5 wt%)를 PVDF/CNT(CNT 함유량 40 wt%) 나노복합체에 첨가했을 때 표면저항이 0.42 .에서 0.18 .로 약 2.3배 감소하는 것을 확인할 수 있었고 주사전자 현미경 이미지로 CNT의 분산성을 확인해 본 결과 PVDF/CNT 나노복합체에 CNT가 잘 분산되었다. 따라서 poly(PyMMP-co-MMA)을 리튬 이차전지 양극재 분산제로 적용했을 때 우수한 성질을 기대할 수 있다.
Poly(PyMMP-co-MMA) (PyMMP: 1-pyrenemethyl methacrylate, MMA: methyl methacrylate) was synthesized for using it as a polymer surfactant of poly(vinylidene fluoride) (PVDF)/carbon nanotube (CNT) nanocomposite when the CNT content is high. The surface resistance of the PVDF/CNT composite film was decreased from 0.42 Ω to 0.18 Ω when the carbon content was 40%. The improved dispersion of CNT in the PVDF/CNT/poly(PyMMP-co-MMA) composite film was confirmed from the scanning electron microscopy images of the fractured surfaces. Thus, poly(PyMMP-co-MMA) can be used as a polymer surfactant in the cathode materials of lithium ion batteries.
- Xiao Y, IEEE Trans. Ind. Electron., 62, 3112 (2015)
- Kim SB, Na BK, Korean Chem. Eng. Res., 55(3), 430 (2017)
- Chi M, Nah DB, Kil SC, Kim SW, J. Energy Eng., 20, 109 (2011)
- Jia CK, Pan F, Zhu YG, Huang Q, Lu L, Wang Q, Sci. Adv., 10 (2015)
- Goto K, Nakagawa T, Nakamura O, Kawata S, IEEE. Trans. Biomed. Eng., 48, 830 (2001)
- Mladenov M, Stoyanova R, Zhecheva E, Vassilev S, Electrochem. Commun., 3, 410 (2001)
- MacNeil DD, Dahn JR, J. Electrochem. Soc., 149(7), A912 (2002)
- MacNeil DD, Christensen L, Landucci J, Paulsen JM, Dahn JR, J. Electrochem. Soc., 147(3), 970 (2000)
- Jung MZ, Park JY, Lee JD, Korean Chem. Eng. Res., 54(1), 16 (2016)
- Rajendrana S, Sivakumar P, Physica B, 430, 509 (2008)
- Jiang Z, Carroll B, Abraham KM, Electrochim. Acta, 42, 2667 (1997)
- David LW, Marissa W, Li J, Zhijia D, et al., Energy Storage Mater., 29, 254 (2020)
- Zan G, Clifton B, Ningning S, Li YZJ, Li X, Nat. Commun., 7, 11586 (2016)
- Kim SH, Woo JS, Park SY, Macromol. Res., 28(11), 1010 (2020)
- Oh KS, Heo SI, Yun JC, Yang YC, Han KS, Adv. Compos. Mater., 17, 259 (2012)
- Kim MS, Kang GH, et al., J. Nanomater., 159737 2012.
- Moisala A, Li Q, Kinloch IA, Windle AH, Compos. Sci. Technol., 66, 1285 (2006)
- Scholta J, Rohland B, Trapp V, Focken U, J. Power Sources, 84(2), 231 (1999)
- Dhakate SR, Mathur RB, Kakati BK, Dhami TL, Int. J. Hydrog. Energy, 32(17), 4537 (2007)
- Huang JH, Baird DG, McGrath JE, J. Power Sources, 150, 110 (2005)
- Kang MH, Yeom HY, Na HY, Lee S, J. Polym., 37, 526 (2013)
- Choi H, Park M, Lee SS, Hong SC, Eur. Polym. J., 44, 3087 (2008)
- Huang JH, Baird DG, McGrath JE, J. Power Sources, 150, 110 (2005)
- Ge L, Zhu Z, Li F, Liu S, Li W, Tang X, Rudolph V, J. Phys. Chem. C, 115, 6661 (2011)
- Weng TH, Tseng HH, Wey MY, Int. J. Hydrog. Energy, 34(20), 8707 (2009)
- Cong HL, Radosz M, Towler BF, Shen YQ, Sep. Purif. Technol., 55(3), 281 (2007)
- Chen JH, Wang MY, Liu B, Fan Z, Cui KZ, Kuang Y, J. Phys. Chem. B, 110(24), 11775 (2006)
- Charlier JC, Accounts Chem. Res., 35, 1063 (2002)
- Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S, Tanigaki K, Hiura H, Nature, 362, 522 (1993)
- Lambin P, Fonseca A, Vigneron JP, Nagy JB, Lucas AA, Chem. Phys. Lett., 245, 85 (1995)
- Saito R, Dresselhaus MS, Dresselhaus G, Phys. Rev. B, 53, 2044 (1996)
- Drew M, Surfactant Science and Technology; WILEY: New Jersey, pp50 2005.
- Drew M, Surfactant Science and Technology; WILEY: New Jersey, pp54 2005.
- Drew M, Surfactant Science and Technology; WILEY: New Jersey, pp66 2005.
- Drew M, Surfactant Science and Technology; WILEY: New Jersey, pp69 2005.
- Song S, Wan C, Zhang Y, RSC Adv., 97, 79947 (2015)
- Park JS, An JH, Jang KS, Lee SJ, Korea-Aust. Rheol. J., 31(2), 111 (2019)