Macromolecular Research, Vol.29, No.9, 582-588, September, 2021
Improved Pseudocapacitive Performance of Graphene Architectures Modulating by Nitrogen/Phosphorus Dual-Doping and Steam-Activation
E-mail:
Steam-assistant nitrogen (N) and phosphorus (P) co-doping of graphene (s-NPG) architectures are constructed by a facile chemical converted method and thermal activation. Steam-activation treatment can provide abundant porous structure for fast ion diffusion and expose more electrochemical active-sites for surface faradic reaction. The wrinkled surface of S-NPG with a large surface area is probed by microscopic analysis. The spectroscopic analysis confirms the existence of pyridinic- N and C-P-O bonds for s-NPG, which are the dominant electroactive sites for accommodating the protons or charges. Therefore, s-NPG exhibits a high specific capacitance of 317 F g-1 at 1 A g-1 with a good rate capability of 87% and cyclic stability of 97.7% after 20,000 cycles. The excellent pseudocapacitive behavior can be attributed to the synergistic effect of hierarchical structure with and surface modification by N and P dual-doping. The simple steam-assistant treatment can be a potential way to construct the hierarchically structured electrode materials for supercapacitors.
- Chen R, Yu M, Sahu RP, Puri IK, Zhitomirsky I, Adv. Eng. Mater., 10, 190384 (2020)
- Ma L, Liu J, Lv S, Zhou Q, Shen X, Mo S, Tong H, J. Mater. Chem. A, 7, 7591 (2019)
- Mahmood Q, Park SK, Kwon KD, Chang SJ, et al., Adv. Eng. Mater., 6, 150111 (2015)
- Nakhanivej P, Yu X, Park SK, Kim S, Hong JY, Kim HJ, et al., Nat. Mater., 18, 156 (2019)
- Xia JL, Chen F, Li JH, Tao NJ, Nat. Nanotechnol., 4(8), 505 (2009)
- Yang Q, Xu Z, Fang B, Huang T, Cai S, Chen H, Liu Y, Gopalsamy K, Gao W, Gao C, J. Mater. Chem. A, 5, 22113 (2017)
- Yu X, Kang Y, Park HS, Carbon, 49, 101 (2016)
- Fujisawa K, Cruz-Silva R, Yang KS, Kim YA, Hayashi T, Endo M, Terrones M, Dresselhaus MS, J. Mater. Chem. A, 2, 9532 (2014)
- Lee G, Jang J, J. Power Sources, 423, 115 (2019)
- Liu L, Yan Y, Cai Z, Lin S, Hu X, Adv. Mater. Interfaces, 5 (2018)
- Yu X, Yun S, Yeon JS, Bhattacharya P, Wang L, Lee SW, Hu X, Park HS, Adv. Eng. Mater., 8, 170293 (2018)
- Hong JY, Sohn EH, Park S, Park HS, Chem. Eng. J., 269, 229 (2015)
- Park JH, Rana HH, Lee JY, Park HS, J. Mater. Chem. A, 7, 16962 (2019)
- Zhou Z, Panatdasirisuk W, Mathis TS, Anasori B, Lu C, Zhang X, Liao Z, Gogotsi Y, Yang S, Nanoscale, 10, 6005 (2018)
- Yu X, Kota M, Park HS, Macromol. Res., 25(10), 1043 (2017)
- Yuan Y, Lv H, Xu Q, Liu H, Wang Y, Nanoscale, 11, 4318 (2019)
- Khan ZU, Yan T, Shi L, Zhang D, Environ. Sci., 5, 980 (2018)
- Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS, Science, 332(6037), 1537 (2011)
- Zhang L, Zhang F, Yang X, Long G, Wu Y, Zhang T, Leng K, Huang Y, Ma Y, Yu A, Chen Y, Sci. Rep., 3, 1408 (2013)
- Gorka J, Jaroniec M, Carbon, 49, 154 (2011)
- Sui Z, Meng Q, Li J, Zhu J, Cui Y, Han B, J. Mater. Chem. A, 2, 9891 (2014)
- Zhou M, Pu F, Wang Z, Guan S, Carbon, 68, 185 (2014)
- Liu S, Peng W, Sun H, Wang S, Nanoscale, 6, 766 (2014)
- Boukhalfa S, Gordon D, He L, Melnichenko YB, Nitta N, Magasinski A, Yushin G, ACS Nano, 8, 2495 (2014)
- Paraknowitsch JP, Thomas A, Energy Environ. Sci., 6, 2839 (2013)
- Yang M, Zhong Y, Bao J, Zhou X, Wei J, Zhou Z, J. Mater. Chem. A, 3, 11387 (2015)
- Kang Y, Yu X, Kota M, Park HS, J. Alloy. Compd., 726, 88 (2017)
- Chen L, Chang J, Zhang Y, Gao Z, Wu D, Xu F, Guo Y, Jiang K, Chem. Commun., 55, 3406 (2019)
- Chen W, Zhao Z, Yu X, Electrochim. Acta, 341, 136044 (2020)
- Yun YS, Cho SY, Jin HJ, Macromol. Res., 22(5), 509 (2014)
- Yu X, Kim HJ, Hong JY, Jung JM, Kwon KD, Kong J, Park HS, Nano Energy, 15, 576 (2015)
- Chen LF, Huang ZH, Liang HW, Gao HL, Yu SH, Adv. Funct. Mater., 24(32), 5104 (2014)
- Wu ZS, Winter A, Chen L, Sun Y, Turchanin A, Feng XL, Mullen K, Adv. Mater., 24(37), 5130 (2012)
- Yu X, Feng LG, Park HS, J. Power Sources, 390, 93 (2018)