화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.9, 502-510, September, 2021
슈퍼커패시터용 폐면 티셔츠로부터 질소 도핑된 다공성 탄소 직물의 제조 및 전기화학 특성 평가
Preparation and Electrochemical Characterization of Nitrogen-Doped Porous Carbon Textile from Waste Cotton T-Shirt for Supercapacitors
E-mail:,
Hierarchically porous carbon materials with high nitrogen functionalities are extensively studied as highperformance supercapacitor electrode materials. In this study, nitrogen-doped porous carbon textile (N-PCT) with hierarchical pore structures is prepared as an electrode material for supercapacitors from a waste cotton T-shirt (WCT). Porous carbon textile (PCT) is first prepared from WCT by two-step heat treatment of stabilization and carbonization. The PCT is then nitrogendoped with urea at various concentrations. The obtained N-PCT is found to have multi-modal pore structures with a high specific surface area of 1,299 m2 g-1 and large total pore volume of 1.01 cm3 g-1. The N-PCT-based electrode shows excellent electrochemical performance in a 3-electrode system, such as a specific capacitance of 235 F g-1 at 1 A g-1, excellent cycling stability of 100 % at 5 A g-1 after 1,000 cycles, and a power density of 2,500 W kg-1 at an energy density of 3.593 Wh kg-1. Thus, the prepared N-PCT can be used as an electrode material for supercapacitors.
  1. Liu C, Li F, Ma LP, Cheng HM, Adv. Mater., 22(8), E28 (2010)
  2. Libich J, Maca J, Vondrak J, Cech O, Sedlarikova M, J. Energy Storage, 17, 224 (2018)
  3. Raza W, Ali F, Raza N, Luo Y, Kim KH, Yang J, Kumar S, Mehmood A, Kwon EE, Nano Energy, 52, 441 (2018)
  4. Kouchachvili L, Yaici W, Entchev E, J. Power Sources, 374, 237 (2018)
  5. Poonam, Sharma K, Arora A, Tripathi SK, J. Energy Storage, 21, 801 (2019)
  6. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M, J. Power Sources, 101(1), 109 (2001)
  7. Zhang LL, Gu Y, Zhao XS, J. Mater. Chem. A, 1, 9395 (2013)
  8. Cross A, Morel A, Cormie A, Hollenkamp T, Donne S, J. Power Sources, 196(18), 7847 (2011)
  9. Majumdar D, Maiyalagan T, Jiang Z, ChemElectro Chem, 6, 4343 (2019)
  10. Agobi AU, Louis H, Magu TO, Dass PM, J. Chem. Rev., 1, 19 (2019)
  11. Meer S, Kausar A, Iqbal T, Polym.-Plast. Technol. Eng., 55, 1416 (2016)
  12. Zhang LL, Zhao XS, Chem. Soc. Rev., 38, 2520 (2009)
  13. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D, J. Mater. Chem. A, 5, 12653 (2017)
  14. Rodrigues AC, Silva ELD, Oliveira APS, et al., Mater. Today Commun., 21, 100553 (2019)
  15. Farzana R, Rajarao R, Bhat BR, Sahajwalla V, J. Ind. Eng. Chem., 65, 387 (2018)
  16. Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F, Carbon, 141, 467 (2019)
  17. Dai SG, Liu Z, Zhao BT, Zeng JH, Hu H, Zhang QB, Chen DC, Qu C, Dang D, Liu ML, J. Power Sources, 387, 43 (2018)
  18. Simotwo SK, Delre C, Kalra V, ACS Appl. Mater. Interfaces, 8, 21261 (2016)
  19. Pandolfo AG, Hollenkamp AF, J. Power Sources, 157(1), 11 (2006)
  20. Zhou S, Li X, Wang Z, Guo H, Peng W, Trans. Nonferrous Met. Soc. China, 17, 1328 (2007)
  21. Teo EYL, Muniandy L, Ng EP, Adam F, Mohamed AR, Jose R, Chong KF, Electrochim. Acta, 192, 110 (2016)
  22. Yang P, Mai W, Nano Energy, 8, 274 (2014)
  23. Bi Z, Kong Q, Cao Y, Sun G, Su F, Wei X, Li X, Ahmad A, Xie L, Chen CM, J. Mater. Chem. A, 7, 16028 (2019)
  24. Liu C, Wang H, Zhao X, Liu H, Sun Y, Tao L, Huang M, Shi J, Shi Z, J. Power Sources, 457, 228056 (2020)
  25. Nor NM, Chung LL, Teong LK, Mohamed AR, J. Environ. Chem. Eng., 1, 658 (2013)
  26. Zhao G, Chen C, Yu D, Sun L, Yang C, Zhang H, Sun Y, Besenbacher F, Yu M, Nano Energy, 47, 547 (2018)
  27. Huo SL, Liu MQ, Wu LL, Liu MJ, Xu M, Ni W, Yan YM, J. Power Sources, 387, 81 (2018)
  28. Lu Y, Liang J, Deng S, He Q, Deng S, Hu Y, Wang D, Nano Energy, 65, 103993 (2019)
  29. Xu B, Zheng DF, Jia MQ, Cao GP, Yang YS, Electrochim. Acta, 98, 176 (2013)
  30. Gao F, Qu JY, Zhao ZB, Wang ZY, Qiu JS, Electrochim. Acta, 190, 1134 (2016)
  31. Peng H, Ma GF, Sun KJ, Zhang ZG, Yang Q, Lei ZQ, Electrochim. Acta, 190, 862 (2016)
  32. Dumanli AG, Windle AH, J. Mater. Sci., 47(10), 4236 (2012)
  33. Saha S, Samanta P, Murmu NC, Kuila T, J. Energy Storage, 17, 181 (2018)
  34. Abbas Q, Raza R, Shabbir I, Olabi AG, J. Sci., 4, 341 (2019)
  35. Candelaria SL, Garcia BB, Liu D, Cao G, J. Mater. Chem., 22, 9884 (2012)
  36. Deng Y, Xie Y, Zou K, Ji X, J. Mater. Chem. A, 4, 1144 (2016)
  37. Lee BM, Eom JJ, Baek GY, Hong SK, Jeun JP, Choi JH, Yun JM, Cellulose, 26, 4529 (2019)
  38. Yu Y, Wang J, Wang J, Li J, Zhu Y, Li X, Song X, Ge M, Cellulose, 24, 1669 (2017)
  39. Lee BM, Umirov N, Lee JY, Lee JY, Choi BS, Hong SK, Kim SS, Choi JH, Int. J. Energy Res., 45, 9530 (2021)
  40. He Y, Liu H, Ke Q, Wang J, J. Mater. Chem. A, 2, 11753 (2014)
  41. Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM, ACS Nano, 4, 5337 (2010)
  42. Fan LZ, Chen TT, Song WL, Li X, Zhang S, Sci. Rep., 5, 15388 (2015)
  43. Lee BM, Chang HS, Choi JH, Hong SK, Korean J. Mater. Res., 31(5), 264 (2021)
  44. Xu B, Zheng DF, Jia MQ, Cao GP, Yang YS, Electrochim. Acta, 98, 176 (2013)
  45. Kim HJ, Lee CM, Dazen K, Delhom CD, Liu Y, Rodgers JE, French AD, Kim SH, Cellulose, 24, 2385 (2017)
  46. Nindiyasari F, Griesshaber E, Zimmermann T, et al., J. Compos. Mater., 50, 657 (2016)
  47. Lee BM, Bui VT, Lee HS, Hong SK, Choi HS, Choi JH, Radiat. Phys. Chem., 163, 18 (2019)
  48. Kaplas T, Kuzhir P, Nanoscale Res. Lett., 12, 121 (2017)
  49. Zhou X, Wang P, Zhang Y, Zhang X, Jiang Y, ACS Sustain. Chem. Eng., 4, 5585 (2016)
  50. Kwon DS, Choi HY, Lee BM, Jeong YG, Yang D, Kim ST, Choi JH, Appl. Surf. Sci., 471, 328 (2019)
  51. Fujishige M, Yoshida I, Toya Y, Banba Y, Oshida K, et al., J. Environ. Chem. Eng., 5, 1801 (2017)
  52. Yorgun S, Vural N, Demiral H, Microporous Mesoporous Mater., 122, 189 (2009)
  53. Phan NH, Rio S, Faur C, Coq LL, Cloirec PL, Nguyen TH, Carbon, 44, 2569 (2006)
  54. Jo HG, Shin DY, Ahn HJ, Korean J. Mater. Res., 29(3), 167 (2019)
  55. Lee BM, Choi BS, Lee JY, Hong SK, Lee JS, Choi JH, Carbon Lett., 31, 67 (2021)
  56. Jeong DS, Yun JM, Kim KH, RSC Adv., 7, 44735 (2017)