화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.5, 556-561, October, 2021
산화철 나노입자를 함유한 초상자성 마이크로니들에 관한 연구
Study of Superparamagnetic Microneedles containing Iron Oxide Nanoparticles
E-mail:
초록
최근 산화철 나노입자는 외부의 자기장에 반응하는 자성의 특성과 생체적합성이 뛰어나 약물전달시스템(drug delivery system, DDS)에 관한 많은 연구의 소재로 사용되어져 왔다. 본 연구에서는 마이크로니들(microneedles, MNs)의 매트릭스 물질로 HA (hyaluronic acid)와 CMC (carboxy methyl cellulose)를 이용하여 SIONs (superparamagnetic iron oxide nanoparticles) 이 함유된 HA-SMNs (hyaluronic acid-superparamagnetic microneedles)와 CMC-SMNs (carboxy methyl cellulose-superparamagnetic microneedles)를 제조하였으며, SEM (scanning electron microscopic), SQUD-VSM (superconducting quantum interference device-vibrating sample magnetometer), FMMD (frequency mixing magnetic detection), 고분자 및 바이오 멤브레인을 이용하여 SMNs의 다양한 특성을 조사하였다. SQUID-VSM 측정 결과 SIONs이 포함된 HA-SMNs와 CMC-SMNs에서 초상자성의 특성이 나타났으며, FMMD 측정에서는 SIONs 농도가 증가함에 따라 신호 강도에 변화가 확인되었다. 또한 SMNs의 바이오 막을 통한 HA-SMNs와 CMC-SMNs의 투과도 분석에서는 각각 평균 92.5%와 98.5% 의 피부 투과율이 조사되었다. 이러한 결과를 통해 SMNs 제형은 경피약물전달시스템(transdermal drug delivery system, TDDS) 및 MR(magnetic mesonance) molecular imaging 분야의 전달소재로 활용될 수 있을 것으로 기대한다.
Recently, iron oxide nanoparticles have been used as the subject of many studies on drug delivery system (DDS) due to their excellent magnetic properties and biocompatibility in response to external magnetic fields. In this study, hyaluronic acid-superparamagnetic microneedles (HA-SMNs) and carboxy methyl cellulose-superparamagnetic microneedles (CMC-SMNs) containing superparamagnetic iron oxide nanoparticles (SIONs) were prepared with HA and CMC as a matrix materials of MNs (microneedles). Various properties of SMNs were then investigated with scanning electron microscopy (SEM), superconducting quantum interference device-vibrating sample magnetometer (SQUD-VSM), frequency mixing magnetic detection (FMMD), and polymer/bio membrane. The SQUID-VSM measurements showed superparamagnetism of HA-SMNs and CMC-SMNs containing SIONs. The FMMD results demonstrated that the signal intensity changed significantly as the concentration of SIONs increased. In addition, SMNs exhibited the average skin permeability intensities on the bio membrane for HA-SMNs and CMC-SMNs were 92.5 and 98.5%, respectively. These results suggested that SMNs could be utilized as deliver materials for a TDDS and MR molecular imaging.
  1. Lee JS, Lee JH, Shim JK, Hur W, Appl. Chem. Eng., 31(1), 13 (2020)
  2. Neuberger T, Schopf B, Hofmann H, Hofmann M, Von Rechenberg B, J. Magn. Magn. Mater., 293, 483 (2005)
  3. Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C, Int. J. Hyperthermia, 34, 1316 (2018)
  4. Min HK, Kim JA, Kim JC, Lee SJ, J. Adv. Eng. Technol., 12(3), 103 (2019)
  5. Lee SJ, Jeong JR, Shin SC, Kim JD, J. Magn. Magn. Mater., 282, 147 (2004)
  6. Lee SJ, Jeong JR, Shin SC, Huh YM, Song HT, Suh JS, Chang YH, Jeon BS, Kim JD, J. Appl. Phys., 97, 10Q915 (2005)
  7. Lee SJ, Jeong JR, Shin SC, Chang YH, Kim JD, Colloids Surf. A: Physicochem. Eng. Asp., 225, 19 (2005)
  8. Jeong JR, Lee SJ, Kim JD, Shim SC, IEEE Trans. Magn., 40(4), 3015 (2004)
  9. Ling D, Lee N, Hyeon T, Accounts Chem. Res., 48, 1276 (2015)
  10. Wassel R, Grady B, Kopke R, Dormer K, Colloids Surf. A: Physicochem. Eng. Asp., 292, 125 (2007)
  11. Lee SJ, Kim HJ, Huh YM, Kim IW, Jeong JH, Kim JC, Kim JD, J. Nanosci. Nanotechnol., 18, 1542 (2018)
  12. Ryu H, Koo H, Sun I, Yuk S, Choi K, Kim K, Kwon I, Adv. Drug Deliv. Rev., 64, 1447 (2012)
  13. Na HB, Song IC, Hyeon T, Adv. Mater., 21(21), 2133 (2009)
  14. Kim YG, Lee SM, Kim DB, Noh KM, Oh KS, Cho SH, Choi EP, Kim KP, Huh KM, Polymer, 42(6), 1059 (2018)
  15. Park JH, Choi SO, Seo S, Choy YB, Prausnitz MR, Eur. J. Pharm. Biopharm., 76, 282 (2010)
  16. Lee JW, Choi SO, Felner EI, Prausnitz MR, Small, 7(4), 531 (2011)
  17. Han SK, Ha HY, Lee SJ, Polymer, 43(4), 540 (2019)
  18. Han SK, Lee SJ, Ha JY, Processes, 9, 321 (2021)
  19. Bonfante G, Lee HJ, Bao L, Park JH, Takama N, Kim BJ, Micro Nano Syst. Lett. 8:13 (2020).
  20. Dixon RV, Skaria E, Lau WM, Manning P, Birch-Machin MA, Moghimi SM, Ng KW, Acta Pharmacol. Sin. B, 11, 2344 (2021)
  21. Wang Z, Luan J, Seth A, Liu L, You M, Gupta P, Rathi P, et al., Nat. Biomed. Eng., 5, 64 (2021)
  22. Lee SJ, J. Adv. Eng. Technol., 20(3), 335 (2017)
  23. Kim CB, Lim EG, Shin SW, Krause HJ, Hong HB, Biosens. Bioelectron., 83(15), 293 (2016)
  24. Hong HB, Krause HJ, Nam IH, Choi CJ, Shin SW, Anal. Methods, 6(19), 8055 (2014)
  25. Krause HJ, Wolters N, Zhang Y, Offenhausser A, Miethe P, Meyer M, Hartmann M, Keusgen M, J. Magn. Magn. Mater., 311, 436 (2007)
  26. Lee SJ, Jeong JR, Shin SC, Kim JC, Chang YH, Chang YM, Kim JD, J. Magn. Magn. Mater., 272-276, 2432 (2004)
  27. Li H, Yang S, Hui D, Hong R, Nanotechnol. Rev., 9, 1265 (2020)