Journal of Industrial and Engineering Chemistry, Vol.103, 136-141, November, 2021
Catalytic pyrolysis of polypropylene over Ga loaded HZSM-5
E-mail:
The effect of catalyst structure, acidity, and Ga addition of zeolites on the pyrolysis of polypropylene (PP) was investigated by comparing PP cracking efficiency and product distribution properties in this study. Thermogravimetric analysis result indicated that HY(SiO2/Al2O3; 30) is the most effective catalyst lowering PP decomposition temperature, followed by Ga/HZSM-5(30), HZSM-5(30), HZSM-5(80), and HZSM-5 (280). Meanwhile, Ga/HZSM-5(30) revealed the lowest apparent activation energy (Ea), 110 kJ/mol, than HY(30) (159 kJ/mol), and other HZSM-5 catalysts (122 ~ 172 kJ/mol), suggesting its high efficiency lowering Ea on PP pyrolysis. Py-GC/MS results also suggested that Ga/HZSM-5 produces the largest amount of aromatic hydrocarbons, followed by HZSM-5(30), HZSM-5(80), HY(30), and HZSM-5(280). The increase of Ga/HZSM-5(30) amount on PP pyrolysis led the further decrease of Ea value and increase of aromatics production efficiency.
Keywords:Catalytic pyrolysis;Polypropylene;Ga/HZSM-5;Kinetic analysis;Pyrolyzer-gas chromatography/mass;spectrometry
- Ng EL, Lwanga EH, Eldridge SM, Johnston P, Hu HW, Geissen V, Chen D, Sci. Total Environ., 627, 1377 (2018)
- Encarnacion JD, Park SJ, Ko YS, Korean J. Chem. Eng., 37(2), 380 (2020)
- Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK, Energy Conv. Manag., 115, 308 (2016)
- Kim YM, Lee HW, Jang SH, Jeong JH, Ryu SM, Jung SC, Park YK, Korean J. Chem. Eng., 37(3), 493 (2020)
- Santamaria L, Lopez G, Arregi A, Artetxe M, amutio M, Buibao J, Olazar, J. Ind. Eng. Chem., 91, 167 (2020)
- Ahmad N, Ahmad N, Maafa IM, Ahmad U, Akhter P, Shezad N, Amjad U, Hussain M, Fuel, Javaid M, Energy, 191, 116543 (2020)
- Ryu S, Lee HW, Kim YM, Jae J, Jung SC, Ha JM, Park YK, Appl. Surf. Sci., 511 (2020)
- Marcilla A, Gomez A, Reyes-Labarta J, Giner A, Polym. Degrad. Stabil., 80, 233 (2003)
- Kassargy C, Awad S, Burnens G, Kahine K, Tazerout M, Fuel, 224, 764 (2018)
- Park HJ, Yim JH, Jeon JK, Kim JM, Yoo KS, Park YK, J. Phys. Chem. Solids, 69, 1125 (2008)
- Santos BPS, Almeida D, Marques MDV, Henriques CA, Fuel, 215, 515 (2018)
- Kim BS, Kim YM, Lee HW, Jae J, Kim DH, Jung SC, Watanabe C, Park YK, ACS Sustain. Chem. Eng., 4, 1354 (2016)
- Liu RL, Zhu HQ, Wu ZW, Qin ZF, Fan WB, Wang JG, J. Fuel Chem. Technol., 43, 961 (2015)
- Park HJ, Heo HS, Jeon JK, Kim J, Ryoo R, Jeong KE, Park YK, Appl. Catal. B: Environ., 95(3-4), 365 (2010)
- Li J, Yu Y, Li X, Wang W, Yu G, Deng S, Huang J, Wang B, Wang Y, Appl. Catal. B: Environ., 172-173, 154 (2015)
- Flynn JH, Wall LA, J. Polym. Sci. B: Polym. Phys., 4, 323 (1966)
- Li QY, He P, Jarvis J, Bhattacharya A, Mao XH, Wang AG, Bernard GM, Michaelis VK, Zeng HB, Liu LJ, Song H, Appl. Catal. B: Environ., 236, 13 (2018)
- Lee HW, Park SH, Jeon JK, Ryoo R, Kim W, Suh DJ, Park YK, Catal. Today, 232, 119 (2014)
- Wang L, Li F, Chen Y, Chen J, J. Energy Chem., 29, 40 (2019)
- Park YK, Siddiqui MZ, Kang Y, Watanabe A, Lee HY, Jeong SJ, Kim SD, Kim YM, Catalysts, 8, 656 (2018)
- Kim HS, Kim S, Kim HJ, Yang HS, Thermochim. Acta, 451(1-2), 181 (2006)
- Durmus A, Koc SN, Pozan GS, Kasgoz A, Appl. Catal. B: Environ., 61(3-4), 316 (2005)
- Castano P, Elordi G, Olazar M, Aguayo AT, Pawelec B, Bilbao J, Appl. Catal. B: Environ., 104, 9 (2011)
- Li Y, Li B, Dai j, Jia H, Gao S, Polym. Degrad. Stabil., 93, 9 (2008)
- Rezaei PS, Shafaghat H, Daud WMAW, RSC Adv., 5, 65408 (2015)
- Uslamin EA, Luna-Murillo B, Kosinov N, Bruijnincx PCA, Pidko EA, Weckhuysen BM, Hensen EJM, Chem. Eng. Sci., 198, 305 (2019)
- Satsuma A, Segawa Y, Yoshida H, Hattori T, Appl. Catal. A: Gen., 264(2), 229 (2004)
- He C, Li P, Cheng J, Wang HL, Li JJ, Li Q, Hao ZP, Appl. Catal. A: Gen., 382(2), 167 (2010)
- Nakai M, Miyake K, Inoue R, Ono K, Jabri HA, Hirota Y, Uchida Y, Tanaka S, Miyamoto M, Oumi Y, Kong CY, Nishiyama N, Catal, Sci. Technol., 9, 6234 (2019)
- Danuthai T, Jongpatiwut S, Rirksomboon T, Osuwan S, Resasco DE, Appl. Catal. A: Gen., 361(1-2), 99 (2009)