화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.11, 2279-2285, November, 2021
Evaluation of elemental leaching behavior and morphological changes of steel slag in both acidic and basic conditions for carbon sequestration potential
E-mail:
Carbon mineralization technology involves reactions between carbon dioxide (CO2) and alkali earth metals such as calcium and/or magnesium to form thermodynamically stable solid carbonates (i.e., CaCO3, and MgCO3), and is currently being recognized as a promising method of both storing and utilizing CO2. In particular, industrial solid wastes such as steelmaking slags (steel and iron slags) are considered to be suitable alkaline feedstock for carbon mineralization. The aqueous carbon mineralization process of steelmaking slags generally includes the extraction of alkali earth metals in a low pH condition, followed by carbonation with CO2 at a high pH. However, since steelmaking slags often exhibit limited leachability depending on their physicochemical properties, it often has an important role in the design of the carbon mineralization process. Here, the leachability of the steel slag was examined in both acidic and basic conditions. The extraction kinetics as well as the various operating factors, such as temperature, and particle size distribution, under an acidic condition were also examined for the potential carbon sequestration using the alkaline wastes.
  1. Gadikota G, Nature Rev. Chem., 4, 78 (2020)
  2. Chang R, Kim S, Lee S, Choi S, Kim M, Park Y, Front. Energy Res., 5, 17 (2017)
  3. Moon S, Lee Y, Choi S, Hong S, Lee S, Park AHA, Park Y, Org. Process Res. Dev., 1723, 22 (2018)
  4. Hong S, Sim G, Moon S, Park Y, Energy Fuels, 3532, 34 (2020)
  5. Zhao H, Park Y, Lee DH, Park AHA, Phys. Chem. Chem. Phys., 15, 15185 (2013)
  6. Teir S, Revitzer H, Eloneva S, Fogelholm CJ, Zevenhoven R, Int. J. Miner. Process., 83(1-2), 36 (2007)
  7. Wang X, Maroto-Valer M, Energy Procedia, 4, 4930 (2011)
  8. Teir S, Eloneva S, Fogelholm CJ, Zevenhoven R, Energy, 32(4), 528 (2007)
  9. Rim G, Marchese AK, Stallworth P, Greenbaum SG, Park AHA, Chem. Eng. J., 396, 125204 (2020)
  10. Park AHA, Jadhav R, Fan LS, Can. J. Chem. Eng., 81, 885 (2003)
  11. Lekakh SN, Robertson DGC, Rawlins CH, Richards VL, Peaslee KD, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 39, 484 (2008)
  12. Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM, Chem. Soc. Rev., 43, 8049 (2014)
  13. World Steel Association, World steel in figures, Publications, Belgium (2020).
  14. Engstrom F, Larsson ML, Samuelsson C, Sandstrom A, Robinson R, Bjorkman B, Steel Res. Int., 85, 607 (2014)
  15. Park AHA, Fan LS, Chem. Eng. Sci., 59(22-23), 5241 (2004)
  16. Azdarpour A, Asadullah M, Mohammadian E, Hamidi H, Junin R, Karaei MA, Chem. Eng. J., 279, 615 (2015)
  17. Ashbrook SE, Dawson DM, Nucl. Magn. Reson., 45, 1 (2016)
  18. Hong S, Huang HD, Rim G, Park Y, Park AHA, ACS Sustain. Chem. Eng., 8(50), 18519 (2020)
  19. Kim SJ, Takekawa J, Shibata H, Kitamura SY, Yamaguchi K, ISIJ Int., 53, 1715 (2013)
  20. Nikolic I, Drincic A, Djurovic D, Karanovic L, Radmilovic VV, Radmilovic VR, Constr. Build. Mater., 108, 1 (2016)
  21. Strohmeier BR, Surf. Interf. Anal., 15, 51 (1990)
  22. Demri B, Muster D, J. Mater. Process. Technol., 55, 311 (1995)
  23. Wagner CD, Passoja DE, Hillery HF, Kinisky TG, Six HA, Jansen WT, Taylor JA, J. Vacuum Sci. Technol., 21, 933 (1982)
  24. Maraghechi H, Rajabipour F, Pantano CG, Burgos WD, Cem. Concr. Res., 87, 1 (2016)
  25. Pan SY, Ling TC, Park AHA, Chiang PC, Aerosol Air Qual. Res., 18, 829 (2018)
  26. Fogler HS, Elements of chemical reaction engineering, Practice Hall, Publications, New Jersey (2004).
  27. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RS, Appl. Surf. Sci., 257(7), 2717 (2011)
  28. Huijgen WJJ, Witkamp GJ, Comans RNJ, Environ. Sci. Technol., 39, 9676 (2005)
  29. McCabe WL, Smith JS, Harriott P, Unit operations of chemical engineering, New York (2004).