- Previous Article
- Next Article
- Table of Contents
Korean Journal of Chemical Engineering, Vol.38, No.11, 2365-2374, November, 2021
Industrial by-product utilized synthesis of mesoporous aluminum silicate sorbent for thorium removal
E-mail:
Recently, there has been an increasing concern in finding sorbents for radionuclide removal from natural sources. AS-BFS sorbent (aluminum silicate composites derived from blast furnace slag) is a suitable candidate for this purpose; due to economic and environmental reasons. Blast furnace slag (BFS) is a by-product of the iron and steel industry plants. The development of a cost-effective route for recycling and utilization assessment of BFS is an urgent task. AS-BFS was prepared from BFS and its physicochemical properties were determined. The elemental composition of the AS-BFS is mainly oxygen (44%), Si (34%), and Al (19%), with traces of titanium, iron, chloride, and calcium. Experimental potentiality regarding sorption characteristics of AS-BFS to thorium ions was explored via the batch method. AS-BFS showed good adsorption capacity for thorium (obtained after 240 min) from aqueous streams (39.7 mg/g). The sorption process is fitted to the mono-layer adsorption model at optimum conditions. It was also proved that adsorption kinetics follows the pseudo-second-order model. The desorption results revealed that thorium ions (93%) could be eluted using 1M HNO3. Hence, the research work indicates that the thorium sorption method with AS-BFS is cost-effective, efficient, and recommended for thorium removal from natural sources.
- Lancmuir D, Herman JS, Geochim. Cosmochim. Acta, 44, 1753 (1980)
- Dill HGA, Arab. J. Geosci., 4, 123 (2011)
- Vertes A, Nagy S, Klencsar Z, Lovas RG, Rosch F, Handbook of nuclear chemistry, Springer US, New York, (2010).
- Abd El-Magied MO, Tolba AA, El-Gendy HS, Zaki SA, Ati AA, Hydrometallurgy, 169, 89 (2017)
- Habashi F, Handbook of extractive metallurgy, WILEY-VCH, Weinheim, Germany (1997).
- Sadeek SA, Moussa EM, El-Sayed MA, Amine MM, Abd El-Magied MO, J. Dispersion Sci. Technol., 35, 926 (2014)
- Agency for Toxic Substances and Disease Registry (ATSDR), Public Health Service (1990).
- EPA, U.S. Environmental Protection Agency, Office of Water, EPA822S12001 (2012).
- FDA, U.S. Food and Drug Administration, Code of Federal Regulations 21 CFR 165.110 (2017).
- Hung NT, Thuan LB, Thanh TC, et al., Hydrometallurgy, 198, 105506 (2020)
- Akl ZF, Hegazy MA, J. Environ. Chem. Eng., 8, 104185 (2020)
- Yuan D, Zhang S, Tan J, Dai Y, Wang Y, He Y, Liu Y, Zhao X, Sep. Sci. Technol., 237, 116379 (2020)
- Yuan D, Zhang S, Xiang Z, He Y, Wang Y, Liu Y, Zhao X, Zhou X, Zhang Q, ACS Appl. Mater. Interfaces, 11, 24512 (2019)
- Seader JD, Henley EJ, Separation process principles, John Wiley & Sons, Inc., New York (2006).
- Worch E, Adsorption technology in water treatment-fundamentals, processes, and modeling, Berlin (2012).
- Broujeni BR, Nilchi A, Azadi F, Environ. Nanotechnol. Monit. Manage., 15, 100400 (2021)
- Metaxas M, Kasselouri-Rigopoulou V, Galiatsatou P, Konstantopoulou C, Oikonomou D, J. Hazard. Mater., 97(1-3), 71 (2003)
- Dolatyari L, Shateri M, Yaftian MR, Rostamnia S, Sep. Sci. Technol., 54(17), 2863 (2019)
- Dousti Z, Dolatyari L, Yaftian MR, Rostamnia S, Sep. Sci. Technol., 54, 2606 (2019)
- Dolatyari L, Yaftian MR, Rostamnia S, Sep. Sci. Technol., 53(9), 1282 (2018)
- Dolatyari L, Yaftian MR, Rostamnia S, J. Environ. Manage., 169, 8 (2016)
- Dolatyari L, Yaftian MR, Rostamnia S, J. Taiwan Inst. Chem. Eng., 60, 174 (2016)
- Karmakar R, Singh P, Sen K, Sep. Sci. Technol., 56, 2369 (2021)
- Marczenko Z, Balcerzak M, Separation, preconcentration and spectrophotometry in inorganic analysis, Amsterdam (2000).
- Coates J, Interpretation of infrared spectra, a practical approach, encyclopedia of analytical chemistry, Chichester (2000).
- Ersoy B, Sariisik A, Dikmen S, Sariisik G, Powder Technol., 197(1-2), 129 (2010)
- Arrigo I, Catalfamo P, Cavallari L, Di Pasquale S, J. Hazard. Mater., 147(1-2), 513 (2007)
- Borges ME, Hernandez L, Ruiz-Morales JC, Martin-Zarza PF, Fierro JLG, Esparza P, Clean Techn. Environ. Policy, 19, 2113 (2017)
- Umegaki T, Ogawa R, Toyama N, Ohki S, Tansho M, Shimizu T, Kojima Y, Inorg. Chem. Front., 4, 1568 (2017)
- Thommes M, Kaneko K, Neimark A, Olivier J, Rodriguez-Reinoso F, Rouquerol J, Sing K, Pure Appl. Chem., 87, 1051 (2015)
- Ansari Z, Singha SS, Saha A, Sen K, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 176, 67 (2017)
- Singh P, Maiti PK, Sen K, Bull. Mater. Sci., 43, 56 (2020)
- Yokoyama T, Ueda A, Kato K, Mogi K, Matsuo S, J. Colloid Interface Sci., 252(1), 1 (2002)
- Treto-Suarez MA, Prieto-Garcia JO, Mollineda-Trujillo A, Lamazares E, Hidalgo-Rosa Y, Mena-Ulecia K, Sci. Rep., 10, 10836 (2020)
- Kannan C, Muthuraja K, Devi MR, J. Hazard. Mater., 244-245, 10 (2013)
- Chargui F, et al., Boletin de la Sociedad Espanola de Ceramica y Vidrio, 57, 169 (2018).
- Ekberg C, Albinsson Y, Comarmond MJ, Brown PL, J. Solution Chem., 29, 63 (2000)
- Beardmore J, Lopez X, Mujika JI, Exley C, Sci. Rep., 6, 30913 (2016)
- Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2 (2010)
- Kaygun AK, Akyil S, J. Hazard. Mater., 147(1-2), 357 (2007)
- Hongxia Z, Zheng D, Zuyi T, Colloids Surf. A: Physicochem. Eng. Asp., 278, 46 (2006)
- Nilchi A, Dehaghan TS, Garmarodi SR, Desalination, 321, 67 (2013)
- Chen CL, Wang XK, Appl. Geochem., 22, 436 (2007)
- Abd El-Magied MO, J. Eng., 2016, 1 (2016)
- Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2 (2010)
- Abu El-Soad AM, Abd El-Magied MO, Atrees MS, Kovaleva EG, Lazzara G, Int. J. Biol. Macromol., 139, 153 (2019)