화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.104, 106-116, December, 2021
Sophisticated plasmon-enhanced photo-nanozyme for anti-angiogenic and tumor-microenvironment-responsive combinatorial photodynamic and photothermal cancer therapy
E-mail:
In the exploitation of nanozymes possessing intrinsic enzyme-like activities for cancer therapy, minor focus has been devoted to plasmonic nanostructures with localized surface plasmon resonance (LSPR)-driven properties. Here, we report the application of unique peroxidase-mimicking plasmonic photonanozymes coupling tumor-microenvironment-responsive reactive oxygen species generation with photothermal effect for effective combinatorial therapy. The well-defined anisotropic photo-nanozyme is synthesized by selectively depositing Pd nanoparticles on the tips of gold nanobypyramids. Intrinsic peroxidase-like properties with 1.5-fold-activity enhancement under photoexcitation are ascribed to a Pd-induced hot electrons/holes separation with efficient H2O2 decomposition. The LSPR-induced photocatalytic/photothermal combinatorial effects are remarkably enhanced upon H2O2 addition, critically suppressing the cell survival rate under near-infrared light. An effective decomposition of cellsignaling H2O2 additionally reveals prominent expression hindrance of vascular endothelial growth factor and hypoxia-inducible factor 1α. Our seminal findings uncover an interrelation between LSPR-induced phenomena and biomimetic fingerprints, valuable to overcome the shortcomings of conventional photodynamic therapy.
  1. Cormode DP, Gao L, Koo H, Trends Biotechnol., 36, 15 (2018)
  2. Wang Y, Sun S, Zhang Z, Shi D, Adv. Mater., 30 (2018)
  3. Gai S, Yang G, Yang P, He F, Lin J, Jin D, Xing B, Nano Today, 19, 146 (2018)
  4. Li RS, Liu H, ChenBB, Zhang HZ, Huang CZ, Wang J, Anal. Methods, 8, 2494 (2016)
  5. Wang Q, Wei H, Zhang Z, Wang E, Dong S, TrAC-Trend in Anal. Chem. 105, 218 (2018).
  6. Jiang D, Ni D Rosenkrans ZT, Huang P, Yan X, Cai W, Chem. Soc. Rev., 48, 3683 (2019)
  7. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X, Nat. Nanotechnol., 2(9), 577 (2007)
  8. Li J, Liu W, Wu X, Gao X, Biomaterials, 48, 37 (2015)
  9. Fan K, Xi J, Fan L, Wang P, Zhu C, Tang Y, Xu X, Liang M, Jiang B, Yang X, Gao L, Nat. Commun., 9, 1440 (2018)
  10. Wang Z, Zhang Y, Ju E, Liu Z, Cao F, Chen Z, Ren J, Qu X, Nat. Commun., 9, 3334 (2018)
  11. Vijayaraghavan P, Liu CH, Vankayala R, Chiang CS, Hwang KC, Adv. Mater., 26(39), 6689 (2014)
  12. Kang Z, Yan X, Zhao L, Liao Q, Zhao K, Du H, Zhang X, Zhang X, Zhang Y, Nano Res., 8, 2004 (2015)
  13. Maji SK, Yu S, Chung K, Ramasamy MS, Lim JW, Wang J, Lee H, Kim DH, ACS Appl. Mater. Interfaces, 10, 42068 (2018)
  14. Chang Y, Cheng Y, Feng Y, Jian H, Wang L, Ma X, Li X, Zhang H, Nano Lett., 18, 886 (2018)
  15. Lim DK, Barhoumi A, Wylie RG, Reznor G, Langer RS, Kohane DS, Nano Lett., 13, 4075 (2013)
  16. Onal ED, Guven K, J. Phys. Chem. C, 121, 684 (2017)
  17. Kim H, et al., Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 8, 23 (2016).
  18. Kim JE, Choi JH, Colas M, Kim DH, Lee H, Biosens. Bioelectron., 80, 543 (2016)
  19. Choi JS, Kim SY, J. Ind. Eng. Chem., 85, 66 (2020)
  20. Roh YH, Eom JY, Choi DG, Moon JY, Shim MS, Bong KW, J. Ind. Eng. Chem., 98, 211 (2021)
  21. Hong EJ, Kim YS, Choi DG, Shim MS, J. Ind. Eng. Chem., 67, 429 (2018)
  22. Clavero C, Nat. Photonic, 8, 95 (2014)
  23. Li Q, Zhuo X, Li S, Ruan Q, Xu QH, Wang J, Adv. Opt. Mater., 3, 801 (2015)
  24. Zhu X, Jia H, Zhu XM, Cheng S, Zhuo X, Qin F, Yang Z, Wang J, Adv. Func. Mater., 27, 170001 (2017)
  25. Fang C, Jia H, Chang S, Ruan Q, Wang P, Chen T, Wang J, Energy Environ. Sci., 7, 3431 (2014)
  26. Wang F, Li CH, Chen HJ, Jiang RB, Sun LD, Li Q, Wang JF, Yu JC, Yan CH, J. Am. Chem. Soc., 135(15), 5588 (2013)
  27. Wu BH, Liu DY, Mubeen S, Chuong TT, Moskovits M, Stucky GD, J. Am. Chem. Soc., 138(4), 1114 (2016)
  28. Tian G, Zhang X, Gu ZJ, Zhao YL, Adv. Mater., 27(47), 7692 (2015)
  29. Phua SZF, Yang G, Lim WQ, Verma A, Chen H, Thanabalu T, Zhao Y, ACS Nano, 13, 4742 (2019)
  30. Ryu JH, Yoon HY, Sun IC, Kwon IC, Kim K, Adv. Mater., 32, 200219 (2020)
  31. Caprifico AE, Foot PJS, Polycarpou E, Calabrese G, Drug Discov. Today, 26, 1825 (2021)
  32. Ishibashi KI, Fujishima A, Watanabe T, Hashimoto K, Electrochem. Commun., 2, 207 (2000)
  33. Yoshioka H, Yoshioka H, Hasegawa K, Biosci. Biotechnol. Biochem., 60, 1971 (1969)
  34. Ponlakhet K, Jarujamrus P, Amatatongchai M, Tamuang S, Anal. Methods, 11, 4785 (2019)
  35. Yin W, Yu J, Lv F, Yan L, Zheng LR, Gu Z, Zhao Y, ACS Nano, 10, 11000 (2016)
  36. Martin H, Ruck C, Schmidt M, Sell S, Beutner S, Mayer B, Walsh R, Pure Appl. Chem., 71, 2253 (1999)
  37. Ranji-Burachaloo H, Gurr PA, Dunstan DE, Qiao GG, ACS Nano, 12, 11819 (2018)
  38. Soh N, Anal. Bioanal. Chem., 386, 532 (2006)
  39. Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z, Nano Lett., 10, 3318 (2010)
  40. Akhavan O, Ghader E, Small, 9, 3593 (2013)
  41. Wang W, Moriyama L, Bagnato VS, Laser Phys. Lett., 10 (2012)
  42. Cho M, Hunt TK, Hussain MZ, Am. J. Physiol. Heart Circ. Physiol., 280, H2357 (2001)
  43. Gao N, Jiang BH, Leonard SS, Corum L, Zhang Z, Roberts JR, Antonini J, Zheng JZ, Flynn DC, Castranova VJ, J. Biol. Chem., 277, 45041 (2002)
  44. Assali A, Razzazan S, Akhavan O, Mottaghitalab F, Adeli M, Atyabi F, Colloids Surf. B: Biointerfaces, 173, 891 (2019)