화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.104, 146-154, December, 2021
An effective route for growth of WO3/BiVO4 heterojunction thin films with enhanced photoelectrochemical performance
E-mail:,
The unsatisfactory solar light absorption of WO3 and poor charge separation of BiVO4 are main limits for their use in photoelectrochemical (PEC) water oxidation. Coupling WO3 with BiVO4 has been considered as a feasible way to improve PEC performance by taking complementary advantages of them. In this work, we obtained nanoflake-structured WO3 by hydrothermal growth with post-annealing. The effect of process variables on morphology and resultant performance were investigated. Electrodeposition growth was utilized to deposit BiVO4 onto WO3 forming WO3/BiVO4 heterojunction thin films. Porous BiVO4 with wormlike morphology was tightly coupled and well-distributed onto WO3 nanoflakes. The optimized best-performing WO3/BiVO4 photoanode exhibits higher photocurrent density than that summation of bare WO3 and BiVO4 over entire range of applied potential. This enhancement is mainly attributed to the effective charge separation at WO3/BiVO4 interface, which is confirmed through electrochemical impedance spectra (EIS) measurements, respectively. Our work provides a referable approach for the growth of WO3/BiVO4 heterojunction photoanode with enhanced PEC performance.
  1. Deng J, Su Y, Liu D, Yang P, Liu B, Liu C, Chem Rev, 119(15), 9221 (2019)
  2. Roger I, Shipman MA, Symes MD, Chemistry, 1(1) (2017)
  3. Shao Z, Meng X, Lai H, Zhang X, Pu X, Su C, Li H, Ren X, Geng Y, Chinese J. Catal., 42(3), 439 (2021)
  4. Li YG, Feng J, Li HJ, Wei XL, Wang RR, Zhou AN, Int. J. Hydrog. Energy, 41(7), 4096 (2016)
  5. Wang Y, Wang S, Wu Y, Wang Z, Zhang H, Cao Z, He J, Li W, Yang Z, Zheng L, Feng D, Pan P, Bi J, Li H, Zhao J, Zhang K, J. Alloy. Compd., 851 (2021)
  6. Peng YY, Ma H, Ma W, Long YT, Tian H, Angew. Chem.-Int. Edit., 57(14), 3758 (2018)
  7. Chen B, Ge B, Fu S, Li Q, Chen X, Li L, Wang J, Yang Z, Ding J, Fan W, Mao B, Shi W, Chem. Eng. Sci., 226 (2020)
  8. Maver K, Arcon I, Fanetti M, Emin S, Valant M, Stangar UL, Catal. Today, 361, 124 (2021)
  9. Li J, Han L, Zhang X, Sun H, Liu X, Lu T, Yao Y, Pan L, Chem. Eng. J., 406 (2021)
  10. Krishnan A, Bhibli SMA, J. Ind. Eng. Chem., 87, 198 (2020)
  11. Fernandez-Domene RM, Sanchez-Tovar R, Lucas-granados B, Munoz-Portero MJ, Garcia-Anton J, Chem. Eng. J., 350, 1114 (2018)
  12. Liang C, Guo H, Zhang L, Ruan M, Niu CG, Feng HP, Wen XJ, Tang N, Liu HY, Zeng GM, Chem. Eng. J., 372, 12 (2019)
  13. Meng J, Wang X, Liu Y, Ren M, Zhang X, Ding X, Guo Y, Yang Y, Chem. Eng. J., 403 (2021)
  14. Hong C, Kim YJ, Seo JH, Kim JH, Ma A, Lim YJ, Seo D, Baek SY, Jung H, Nam KM, ACS Appl Mater Interfaces, 12(35), 39713 (2020)
  15. Pan JB, Wang BH, Wang JB, Ding HZ, Zhou W, Liu W, Zhang JR, Shen S, Guo JK, Chen L, Au CT, Jiang LL, Yin SF, Angew. Chem.-Int. Edit., 60(3), 1433 (2021)
  16. Zhang B, Wang L, Zhang Y, Ding Y, Bi Y, Angew. Chem.-Int. Edit., 57(8), 2248 (2018)
  17. Park Y, McDonald KJ, Choi KS, Chem. Soc. Rev., 42(6), 2321 (2013)
  18. Mi Q, Zhanaidarova A, Brunschwig BS, Gray HB, Lewis NS, Energy Environ. Sci., 5(2) (2012)
  19. Yoon SH, Sadike T, Ding JR, Kim KS, J. Ind. Eng. Chem., 85, 240 (2020)
  20. Hong SJ, Lee S, Jang JS, Lee JS, Energy Environ. Sci., 4(5) (2011)
  21. Ma Z, Song K, Wang L, Gao F, Tang B, Hou H, Yang W, ACS Appl Mater Interfaces, 11(1), 889 (2019)
  22. Yan DJ, Fu XC, Shang ZC, Liu JK, Luo HA, Chem. Eng. J., 361, 853 (2019)
  23. Vignesh R, Mathy VPB, Geetha GV, Sivakumar R, Sanjeeviraja C, Mater. Lett., 285 (2021)
  24. Ta CXM, Akamoto C, Furusho Y, Amano F, ACS Sustainable Chem. Eng., 8(25), 9456 (2020)
  25. Nareejun W, Ponchio C, Sol. Energy Mater. Sol. Cells, 212 (2020)
  26. Lee MG, Kim DH, Sohn W, Moon CW, Park H, Lee S, Jang HW, Nano Energy, 28, 250 (2016)
  27. Wang S, Chen P, Bai Y, Yun JH, Liu G, Wang L, Adv. Mater., 30(20) (2018)
  28. Wu JM, Chen Y, Pan L, Wang PH, Cui Y, Kong DC, Wang L, Zhang XW, Zou JJ, Appl. Catal. B: Environ., 221, 187 (2018)
  29. Liang X, Wang P, Tong F, Liu X, Wang C, Wang M, Zhang Q, Wang Z, Liu Y, Zheng Z, Dai Y, Huang B, Adv. Funct. Mater., 31(8) (2020)
  30. Yang J, Li W, Li J, Sun D, Chen Q, J. Mater. Chem., 22(34) (2012)
  31. Sun D, Bai H, Zhao Y, Zhang Q, Bai Y, Liu Y, Pang X, Wang F, Ding J, Xu D, Fan W, Shi W, ACS Appl. Mater. Interfaces, 12(47), 52763 (2020)
  32. You H, Ding C, Song X, Ding B, Fang J, CrystEngComm, 13(14) (2011)
  33. Nanev CN, Cryst. Res. Technol., 53(5) (2018)
  34. Nguyen DT, Kim KS, Chem. Eng. J., 286, 266 (2016)
  35. Taher FA, Abdeltwab E, Nanomaterials Synthesis, Elsevier, pp.53, 2019.
  36. Wu Z, Yang S, Wu W, CrystEngComm, 18(13), 2222 (2016)
  37. Ding JR, Kim KS, AIChE J., 62(2), 421 (2016)
  38. Ding JR, Kim KS, Chem. Eng. J., 334, 1650 (2018)
  39. Knoppel J, Zhang S, Speck FD, Mayrhofer KJJ, Scheu C, Cherevko S, Electrochem. Commun., 96, 53 (2018)
  40. Zhang S, Ahmet I, Kim SH, et al., ACS Appl Energy Mater, 3(10), 9523 (2020)
  41. Xu S, Fu DF, Song K, Wang L, Yang ZB, Yang WY, Hou HL, Chem. Eng. J., 349, 368 (2018)
  42. Ye KH, Wang Z, Gu J, Xiao S, Yuan Y, Zhu Y, Zhang Y, Mai W, Yang S, Energy Environ. Sci., 10(3), 772 (2017)