Journal of Industrial and Engineering Chemistry, Vol.104, 203-211, December, 2021
Controlled-crystallinity of SiO2/TiO2 hollow nanoparticles and their electroresponsive behaviors
E-mail:
Titania has been frequently used as an electrorheological (ER) particle in ER fluids owing to its high dielectric constant. Additionally, titania possesses the ability to control the crystallinity range of particles. In this study, we investigated the effect of crystallinity control ability of titania on the performance of ER fluids, by adjusting the crystallinity of SiO2/TiO2 hollow nanoparticles (HNPs) through heat treatment at temperatures 200, 900, 1000, and 1100 °C. The morphologies of the pristine and heat-treated HNPs confirmed by transmission electron microscopy (TEM) images, and HNP treated at 1100 °C exhibited the largest grain size. The X-ray diffraction (XRD) patterns confirmed that as the annealing temperature increased, the crystallinity of titania increased, resulting in sharper, stronger characteristic peaks. Furthermore, it is revealed that variations in the crystalline structure and shell thickness induced changes in ER properties such as the loss tangent and charge accumulation. The loss tangent decreased with an increase in grain size considering the decrease in charge accumulation sites. To the best of our knowledge, this is the first study to report this novel insight, and it can be applied to subsequent studies for
achieving high ER performance, and thus, realizing practical commercialization of ER fluids.
Keywords:Crystallinity;Electrorheological fluids;Heat treatment;Hollow nanoparticles;Phase transition
- Jadhav A, Ashta T, Int. J. Eng. Res. Technol., 1(10), 1 (2012)
- Kesy Z, Medrek G, Olszak A, Osowski K, Kesy A, Electrorheological Fluid Based Clutches and Brakes, Elsevier Ltd., 2019.
- Gurka M, Johnston L, Petricevic R, J. Intell. Mater. Syst. Struct., 21, 1531 (2010)
- Xu YL, Qu WL, Ko JM, Earthq. Eng. Struct. Dyn., 29(5), 557 (2000)
- Bohon K, Krause S, J. Polym. Sci. B: Polym. Phys., 36, 11091 (1988)
- Lu Q, Han WJ, Choi HJ, Molecules, 23, 11 (2018)
- Kwon SH, Piao SH, Choi HJ, Nanomaterials, 5(4), 2249 (2015)
- dong YZ, Seo Y, Choi HJ, Soft Matter, 15(17), 3473 (2019)
- Yoon CM, Lee K, Noh J, Lee S, Jang J, J. Mater. Chem. C, 4(8), 1713 (2016)
- Yin J, Xia X, Xiang L, Qiao Y, Zhao X, Smart Mater. Struct., 18, 9 (2009)
- Kim MW, Moon IJ, Choi HJ, Seo Y, RSC Adv., 6(61), 56495 (2016)
- Sun WJ, Song HJ, Xi ZY, Ma JB, Wang BX, Liu XG, Hao CC, Chen KZ, Ind. Eng. Chem. Res., 59(3), 1168 (2020)
- Yoon CM, Noh J, Jang Y, Jang J, RSC Adv., 7(32), 19754 (2017)
- Guo X, Chen Y, Li D, Li G, Xin M, Zhao M, Yang C, Hao C, Lei Q, Soft Matter, 12(2), 546 (2016)
- Robertson J, Eur. Phys. J. Appl. Phys., 28(3), 265 (2004)
- Zhao XP, Yin JB, Xiang LQ, Zhao Q, J. Mater. Sci., 37(12), 2569 (2002)
- Koparde VN, Cummings PT, ACS Nano, 2(8), 1620 (2008)
- Choi M, Kim C, Jeon SO, Yook KS, Lee JY, Jang J, Chem. Commun., 47(25), 7092 (2011)
- Thamaphat K, Limsuwan P, Ngotawornchai B, Kasetsart J., 42(5), 357 (2008)
- Wei X, Zhu G, Fang J, Chen J, Int. J. Photoenergy, 2013 (2013)
- Praveen P, Viruthagiri G, Mugundan S, Shanmugam N, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 117, 622 (2014)
- Barzinjy AA, Azeez HH, Appl SN, Sci., 2, 5 (2020)
- Khan A, Toufiq AM, Tariq F, Khan Y, Hussain R, Akhtar N, Rahman SU, Mater. Res. Express, 6, 6 (2019)
- Bakri AS, Sahdan MZ, Adriyanto F, Raship NA, Said NDM, Abdullah SA, Rahim MS, AIP Conf. Proc., 1788 (2017)
- Khatim O, Amamra M, Chhor K, Bell AMT, Novikov D, Vrel D, Kanaev A, Chem. Phys. Lett., 558, 53 (2013)
- Louis B, Krins N, Faustini M, Grosso D, J. Phys. Chem. C, 115(7), 3115 (2011)
- Tobaldi DM, Tucci A, Skapin AS, Esposito L, J. European Ceram. Soc., 30(12), 2481 (2010)
- Coronado DR, Oskam G, Poot FP, ECS Trans., 3(9), 47 (2019)
- Rashid SA, Othman SH, Ghazi TIM, Abdullah N, J. Nanomater., 2010 (2010)
- Lim YC, Zainal Z, Hussien MZ, Tan WT, Dig. J. Nanomater. Biostructures, 8(1), 167 (2012)
- Yurdakal S, et al., catalyst characterization techniques, Vol. 4, 2019.
- Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87(9-10), 1051 (2015)
- Lee JK, Han SY, Park SK, Park YK, Lee CW, Korean J. Chem. Eng., 22(1), 42 (2005)
- Wenelska K, Ottmann A, Schneider P, Thauer E, Klingeler R, Mijowska E, Energy, 103, 100 (2016)
- Fu S, Fang Q, Li A, Li Z, Han J, Dang X, Han W, Energy Sci. Eng., 9(1), 80 (2021)
- Fang Y, Wang J, Li J, Li L, Lin J, Tang C, J. Mater. Sci. Mater. Electron., 27(6), 6115 (2016)
- Konijn BJ, Sanderink OBJ, Kruyt NP, Powder Technol., 266, 61 (2014)
- Seo YP, Choi HJ, Seo Y, Soft Matter, 8(17), 4659 (2012)
- Seo YP, Chua WH, Seo Y, A.I.P. Conf, Proc., 1664 (2015)
- Seo YP, Choi HJ, Seo Y, Polymer, 52(25), 5695 (2011)
- Shang Y, Ma S, Li J, Li M, Wang J, Zhang S, J. Mater. Sci. Technol., 22(4), 572 (2006)
- Rejon L, Manero O, Lira-Galeana C, Fuel, 83(4-5), 471 (2004)
- Hao T, Kawai A, Ikazaki F, Langmuir, 14(5), 1256 (1998)
- Mei F, Liu C, Zhou L, Zhao WK, Fang YL, Wang JB, Ren YY, J. Korean Phys. Soc., 48(6), 1509 (2006)
- Dodoo-Arhin D, Buabeng FP, Mwabora JM, Amaniampong PN, Agbe H, Nyankson E, Obada DO, Asiedu NY, Heliyon, 4, 7 (2018)
- Al-Hartomy OA, Al-Solamy F, Al-Ghamdi A, Dishovsky N, Ivanov M, Mihaylov M, El-Tantawy F, Int. J. Polym. Sci., 2011, 33 (2011)
- Lee S, Kim YK, Hong JY, Jang J, A.C.S. Appl, Mater. Interfaces, 8(36), 24221 (2016)
- Gwon H, Park S, Lee S, J. Mater. Chem. C, 8(44), 15751 (2020)
- Lee S, Lee J, Hwang SH, Yun J, Jang J, ACS Nano, 9(5), 4939 (2015)
- Ma L, Zheng F, Zhao X, J. Intell. Mater. Syst. Struct., 26(14), 1936 (2015)
- Sentein C, Guizard B, Giraud S, Ye C, Tenegal F, J. Phys. Conf. Ser., 170 (2009)