화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.104, 258-271, December, 2021
Simulation of continuous catalytic conversion of glycerol into lactic acid in a microreactor system: A CFD study
E-mail:,
Hand in hand with the flourish of the biodiesel industry, glycerol (GLY) as an inconvenient by-product has generated environmental and sustainability concerns. Devising measures for efficient transformation of GLY into value-added products is a promising solution. In this contribution, the transformation of GLY to lactic acid (LA) as a valuable chemical was investigated in a continuous process for industrial applications. In this regard, a catalytic method using heterogeneous Cu nanoparticles in NaOH solution was studied in a microreactor by a CFD simulation. A seven-inlet micromixer comprising an optimized mixing unit was incorporated for uniform distribution of the species. The effects of various parameters upon the process performance were considered and the optimum points were determined. Also, the extent of the influence of each variable on LA yield was evaluated using sensitivity analysis techniques. While higher LA yield could be obtained at extreme scenarios, optimum values of the Re and temperature for obtaining the maximum performance under sensible operating conditions were determined to be 0.108 and 510.1 K which led to the optimum yields of 67.8% and 59.5%, respectively. Moreover, the sensitivity analysis revealed that the molar ratio of OH-/GLY and temperature were the most and least significant parameters, respectively.
  1. Tan HW, Abdul Aziz AR, Aroua MK, Renew. Sust. Energ. Rev., 27, 118 (2013)
  2. Ayoub M, Abdullah AZ, Renew. Sust. Energ. Rev., 16(5), 2671 (2012)
  3. Zhou CH, Beltramini JN, Fan YX, Lu GQ, Chem. Soc. Rev., 37(3), 527 (2008)
  4. Go AW, Sutanto S, Ong LK, Tran-Nguyen PL, Ismadji S, Ju YH, Renew. Sust. Energ. Rev., 60, 284 (2016)
  5. BP: statistical review of world energy, June 2020. British Petroleum. Available at: http://www.bp.com/statisticalreview.
  6. Marx S, Fuel Process. Technol., 151, 139 (2016)
  7. He Q, McNutt J, Yang J, Renew. Sust. Energ. Rev., 71, 63 (2017)
  8. Kumar LR, Yellapu SK, Tyagi RD, Zhang X, Bioresour. Technol., 293 (2019)
  9. Monteiro MR, Kugelmeier CL, Pinheiro RS, Batalha MO, da Silva Cesar A, Renew. Sust. Energ. Rev., 88, 109 (2018)
  10. Sivasankaran C, Ramanujam PK, Balasubramanian B, Biofuels, 10(3), 309 (2019)
  11. Arcanjo MRA da Silva IJ, Cavalcante CL, Iglesias J, Morales G, Paniagua M, Melero JA, Vieira RS, Biofuels Bioprod. Biorefining, 14(2), 357 (2020)
  12. Arcanjo MRA, Paniagua M, Morales G, Iglesias J, Melero J, Da Silva I, Rodriguez-Castellon E, Vieira RS, Ind. Eng. Chem. Res. (2020).
  13. Sharninghausen LS, Campos J, Manas MG, Crabtree RH, Nat. Commun., 5, 1 (2014)
  14. Aroua MK, Cognet P, Front. Chem., 8, 1 (2020)
  15. Choi YB, Nunotani N, Imanaka N, Mater. Lett., 278 (2020)
  16. Chotchuang A, Kunsuk P, Phanpitakkul A, Chanklang S, Chareonpanich M, Seubsai A, Catal. Today (February) (2020).
  17. Liu D, Liu JC, Cai W, Ma J, Yang HB, Xiao H, Li J, XIong Y, Huang Y, Liu B, Nat. Commun., 10(1) (2019)
  18. Han Z, Xie R, Song Y, Fan G, Yang L, Li F, Mol. Catal., 477 (2019)
  19. Xiu ZX, Wang HY, Cai CL, Li CZ, Yan L, Wang CG, Li WZ, Xin HS, Zhu CH, Zhang Q, Liu QY, Ma LL, Ind. Eng. Chem. Res., 59(21), 9912 (2020)
  20. Cai F, Jin F, Hao J, Xiao G, Catal. Commun., 131 (2019)
  21. Feng SH, Zhao BB, Liang Y, Liu L, Dong JX, Ind. Eng. Chem. Res., 58(8), 2661 (2019)
  22. Zhou S, Lama S, Sankaranarayanan M, Park S, Bioresour. Technol., 292 (2019)
  23. Xie QL, Li SS, Gong RC, Zheng GJ, Wang YL, Xu P, Duan Y, Yu SZ, Lu MZ, Ji WR, Nie Y, Ji JB, Appl. Catal. B: Environ., 243, 455 (2019)
  24. Harun N, et al., Int. J. Hydrogen Energy, 213 (2019).
  25. Shahirah MNN, Gimbun J, Lam SS, Ng YH, Cheng CK, Renew. Energy, 132, 1389 (2019)
  26. Razali N, Abdullah AZ, Appl. Catal. A: Gen., 543, 234 (2017)
  27. Zavrazhnov SA, Esipovich AL, Danov SM, Zlobin SY, Belousov AS, Kinet. Catal., 59(4), 459 (2018)
  28. Ameen SM, Caruso G, Lactic acid in the food industry, 2017.
  29. Singh J, Meshram V, Gupta M, Bioactive natural products in drug discovery (chapter 16), 2020.
  30. Algiert-Zielinska B, Mucha P, Rotsztejn H, Int. J. Dermatol., 58(3), 374 (2019)
  31. Maki-Arvela P, Simakova IL, Salmi T, Murzin DY, Chem. Rev., 114(3), 1909 (2014)
  32. Li S, et al., Catalytic conversion of cellulose-based biomass and glycerol to lactic acid, Elsevier B.V. and Science Press, 2019.
  33. Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey MC, Int. J. Biol. Macromol., 125, 307 (2019)
  34. Jem KJ, Tan B, Adv. Ind. Eng. Polym. Res. (2020).
  35. Djukic´-Vukovic A, Mladenovic D, Ivanovic J, Pejin J, Mojovic L, Renew. Sust. Energ. Rev., 108, 238 (2019)
  36. Karamanlioglu M, Preziosi R, Robson GD, Polym. Degrad. Stab., 137, 122 (2017)
  37. Bang G, Kim SW, J. Ind. Eng. Chem., 18, 3 (2012)
  38. Abdel-Rahman MA, Tashiro Y, Sonomoto K, Biotechnol. Adv., 31(6), 877 (2013)
  39. Martinez FAC, Balciunas EM, Salgado JM, Gonzalez JMD, Converti A, de S. Oliveira RP, Trends Food Sci. Technol., 30(1), 70 (2013)
  40. Yin H, Yin H, Wang A, Shen L, J. Ind. Eng. Chem., 57 (2018)
  41. Levenspiel O, Chemical reaction engineering, Vol. third edit, American Chemical Society (1999).
  42. Wirth T, Aspects P, Microreactors in Organic Chemistry and Catalysis, WHILEYVCH 2013.
  43. Moreira ABF, Bruno AM, Souza MMVM, Manfro RL, Fuel Process. Technol., 144, 170 (2016)
  44. Mimura N, Muramatsu N, Hiyoshi N, Sato O, Yamaguchi A, Catal. Today (February) (2020).
  45. Zhang G, Jin F, Wu B, Cao J, Adam YS, Wang Y, Int. J. Chem. React. Eng., 10, 1 (2012)
  46. Shimanouchi T, Ueno S, Shidahara K, Kimura Y, Chem. Lett., 43(4), 535 (2014)
  47. Yuksel A, Koga H, Sasaki M, Goto M, Ind. Eng. Chem. Res., 49(4), 1520 (2010)
  48. Bruno AM, Chagas CA, Souza MMVM, Manfro RL, Renew. Energy, 118, 160 (2018)
  49. Geyer K, Codee JDC, Seeberger PH, Chem. - A Eur. J., 12(33), 8434 (2006)
  50. Frost CG, Mutton L, Green Chem., 12(10), 1687 (2010)
  51. Jahnisch K, Hessel V, Lowe H, Baerns M, Chemistry in Microstructured Reactors, Vol. 43, 2004.
  52. Santana HS, Silva JL, Taranto OP, J. Ind. Eng. Chem., 69, 1 (2019)
  53. Zavrazhnov SA, Esipovich AL, Zlobin SY, Belousov AS, Vorotyntsev AV, Catalysts, 9(3), 1 (2019)
  54. Fang YQ, Ye YH, Shen RQ, Zhu P, Guo R, Hu Y, Wu LZ, Chem. Eng. J., 187, 306 (2012)
  55. Ortega-Casanova J, Chem. Eng. Process. - Process Intensif., 117, 18 (2017)
  56. Ortega-Casanova J, Lai CH, Chem. Eng. Process. - Process Intensif., 125, 163 (2018)
  57. Jakobsen HA, Chemical reactor modeling: Multiphase reactive flows Vol. 9783319050 Second edition 2014 Springer International Publishing.
  58. Angeli P, Gavriilidis A, Encyclopedia of Microfluidics and Nanofluidics, Springer, US, pp.1971, 2008.
  59. Bordbar A, Taassob A, Zarnaghsh A, Kamali R, J. Ind. Eng. Chem. (2018).
  60. Ghiaasiaan SM, Abdel-Khalik SI, Adv. Heat Transf., 34, 145 (2001)
  61. Serizawa A, Feng Z, Kawara Z, Exp. Therm. Fluid Sci., 26(6-7), 703 (2002)
  62. Danesh A, PVT and phase behaviour of petroleum reservoir fluids, 1998.
  63. Treybal RE, Mass Transfer Operations 3th edition, 1981.
  64. Schotte W, Chem. Eng. J., 48(3), 167 (1992)
  65. Lee SH, Rasaiah JC, J. Chem. Phys., 135(12), 1 (2011)
  66. Alappat C, Basermann A, Bishop AR, Fehske H, Hager G, Schenk O, Thies J, Wellein G, ACM Trans Parallel Comput. (2020).
  67. COMSOL Multiphysics Reference Manual, version 5.3‘‘, COMSOL, Inc. Available at: www.comsol.com.
  68. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S, Global Sensitivity Analysis. The Primer (2008).
  69. Saltelli A, et al., Sensitivity Analysis in Practice. A Guide to Assessing Scientific Models, Probability and Statistics Series. (2004).
  70. Borgonovo E, Plischke E, Eur. J. Oper. Res. (2016).
  71. Morris MD, Technometrics, 33(2), 161 (1991)
  72. Homma T, Saltelli A, Reliab. Eng. Syst. Saf., 52, 1 (1996)
  73. Pianosi F, Wagener T, Environ. Model. Softw., 67, 1 (2015)
  74. Pianosi F, Sarrazin F, Wagener T, Environ. Model. Softw., 70, 80 (2015)
  75. De Brabanter K, Karsmakers P, Ojeda F, Alzate C, De Brabanter J, Pelckmans K, De Moor B, Vandewalle J, Suykens JAK, (2011).
  76. Nelder JA, Mead R, Comput. J., 7(4), 308 (1965)
  77. Sahandi PJ, Salimi M, Iranshahi D, J. Mol. Liq., 326 (2021)
  78. Boache PJ, J. Fluids Eng. Trans. ASME, 116(3), 405 (1994)
  79. Abdullah AZ, Yaacob MH, Basir NI, J. Ind. Eng. Chem., 85 (2020)
  80. Liu L, Ye XP, Fuel Process. Technol., 137 (2015)
  81. Chen L, Ren S, Ye XP, Fuel Process. Technol., 120 (2014)
  82. Chakraborty S, Panigrahi PK, Appl. Therm. Eng., 174 (2020)
  83. Ghadimi A, Saidur R, Metselaar HSC, Int. J. Heat Mass Transf., 54(17-18) (2011)
  84. Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS, Chem. Rev. (2016).
  85. Pradhan SR, Colmenares-Quintero RF, Quintero JCC, Molecules (2019).
  86. Metcalfe G, Rudman M, Brydon A, Graham LJW, Hamilton R, AIChE J., 52(1), 9 (2006)
  87. Farzaneh H, Behzadmehr A, Yaghoubi M, Samimi A, Sarvari SMH, Energy Conv. Manag., 111 (2016)
  88. Dang LX, Annapureddy HVR, Sun X, Thallapally PK, McGrail BP, Chem. Phys. Lett., 551 (2012)
  89. Wang J, Li Z, Jia Y, Wang B, Xu Z, J. Nanoparticle Res., 23, 1 (2021)