Journal of Industrial and Engineering Chemistry, Vol.104, 427-436, December, 2021
Asphaltene thermal treatment and optimization of oxidation conditions of low-cost asphaltene-derived carbon fibers
E-mail:
This investigation is aimed at determining the conditions for the oxidation/stabilization of asphaltene fibers through extensive physicochemical characterization and evaluation of mechanical properties of the resulting carbon fibers. Melt spinning was used to fabricate green fibers using asphaltenes, from both straight solvent-de-asphalting (SDA) processing and subsequent thermal treatment. Thermal pretreatment of SDA asphaltenes was found to yield much improved carbon fiber properties. An oxidation treatment of HT300-derived (thermal pretreatment at 300 °C) carbon fibers provided the best mechanical properties with an average tensile strength of ~1130 MPa and an average Young’s modulus of 71 GPa. Thermal treatment of SDA asphaltenes led to much lower sulfur content in both oxidized and carbonized fibers when oxidation was performed at ~300 °C. BET, XPS, and XRD analyses showed that carbon fibers fabricated from treated asphaltenes with improved mechanical properties had a lower surface area, lower pore volume, higher amount of stable functional groups than SDA asphaltene-derived carbon fibers.
Keywords:Asphaltene;Carbon fibers;Oxidation parameters;Physicochemical characterization;Mechanical properties
- Peebles LH, Carbon fibers: formation, structure, and properties, CRC Press, 2018.
- Newcomb BA, Compos. Pt. A-Appl. Sci. Manuf., 91, 262 (2016)
- Frank E, Hermanutz F, Buchmeiser MR, Macromol. Mater. Eng., 297(6), 493 (2012)
- Liu Y, Kumar S, Polym. Rev., 52(3), 234 (2012)
- Frank E, Steudle LM, Ingildeev D, Sporl JM, Buchmeiser MR, Angew. Chem.-Int. Edit., 53(21), 5262 (2014)
- Jia Z, Li FP, Wang L, Compos. Sci. Technol., 154, 53 (2018)
- Chung DD, Chung D, Carbon fiber composites, Elsevier, 2012.
- Dubary N, Taconet G, Bouvet C, Vieille B, Compos. Struct., 168, 663 (2017)
- Maaroufi MA, Carpier Y, Vieille B, Gilles L, Coppalle A, Barbe F, Compos. B Eng., 119, 101 (2017)
- Guo Y, Dong Q, Chen J, Yang X, Yi X, Jia Y, Compos. Pt. A-Appl. Sci. Manuf., 97, 10 (2017)
- Gao X, Huang Z, Zhou H, Li D, Li Y, Wang Y, Polym. Compos., 40(9), 3749 (2019)
- Jesthi DK, Nayak A, Mohanty SS, Rout AK, Nayak RK, Materials Science and Engineering, IOP Publishing (2018).
- Khayyam H, Jazar RN, Nunna S, Golkarnarenji G, Badii K, Fakhrhoseini SM, Kumar S, Naebe M, Prog. Mater Sci., 107 (2020)
- Naito K, Yang JM, Tanaka Y, Kagawa Y, J. Mater. Sci., 47(2), 632 (2012)
- Naito K, Yang JM, Tanaka Y, Kagawa Y, Appl. Phys. Lett., 92(23) (2008)
- Shirasu K, Nagai C, Naito K, Mech. Eng. J., 7, 19 (2020)
- Gao Q, Jing M, Zhao S, Wang Y, Qin J, Yu M, Wang C, Ceram. Int., 46(14), 23059 (2020)
- Baker DA, Rials TG, J. Appl. Polym. Sci., 130(2), 713 (2013)
- https://rmi.org/RFGraph-carbonfiber_vs_steel_manufacturing.
- Yang KS, Kim BH, Yoon SH, Carbon Lett, 15(3), 162 (2014)
- https://enrg.io/tesla-battery-weight-overview-all-models.
- https://www.energy.gov/sites/prod/files/2014/03/f11/lm002_warren_2011_o.pdf.
- Wu Q, Pan D, Text. Res. J., 72(5), 405 (2002)
- Kubo S, Kadla JF, J. Polym. Environ., 13, 97 (2005)
- Alcaniz-Monge J, Cazorla-Amoros D, Linares-Solano A, Oya A, Sakamoto A, Hosm K, Carbon, 35(8), 1079 (1997)
- Yang CQ, Simms JR, Carbon, 31(3), 451 (1993)
- Braun JL, Holtman KM, Kadla JF, Carbon, 43(2), 385 (2005)
- Thunga M, Chen K, Grewell D, Kessler MR, Carbon, 68, 159 (2014)
- Culebras M, Beaucamp A, Wang Y, Clauss MM, Frank E, Collins MN, ACS Sustainable Chem. Eng., 6(7), 8816 (2018)
- Boussingault J, Annales de Chimie et de Physique, 141 (1837).
- Speight JG, Long RB, Trowbridge TD, Fuel, 63, 616 (1984)
- Park SJ, Carbon fibers, Springer, 2015.
- Mozaffari S, Tchoukov P, Atias J, Czarnecki J, Nazemifard N, Energy Fuels, 29(9), 5595 (2015)
- Sato T, Araki S, Morimoto M, Tanaka R, Yamamoto H, Energy Fuels, 28(2), 891 (2014)
- Ancheyta J, Centeno G, Trejo F, Speight JG, Catal. Today, 109(1-4), 162 (2005)
- Zhang LL, Yang GH, Wang JQ, Li Y, Li L, Yang CH, Fuel, 128, 366 (2014)
- Xue Y, Liu J, Liang J, Polym. Degrad. Stabil., 98, 219 (2013)
- Arbab S, Zeinolebadi A, Polym. Degrad. Stabil., 98(12), 2537 (2013)
- Liu J, Chen X, Liang D, Xie Q, Utilization, and Environmental Effects, 1 (2020).
- Lim TH, Yeo SY, Sci. Rep., 7(1), 1 (2017)
- Guo JG, Li XK, Xu HT, Zhu H, Li BL, Westwood A, Energy Fuels, 34(5), 6474 (2020)
- Bermudez V, Ogale AA, Carbon, 168, 328 (2020)
- Maeda T, Zeng SM, Tokumitsu K, Mochida I, Carbon, 31(3), 407 (1993)
- Jiang W, Ni G, Zuo P, Qu S, Li Y, Niu H, Shen W, Carbon Letters, 29(5), 505 (2019)
- Yang J, Nakabayashi K, Miyawaki J, Yoon SH, J. Ind. Eng. Chem., 34, 397 (2016)
- Kim B, Kwon B, Jang S, Kim PG, Ji K, Sci. Total Environ., 565, 649 (2016)
- Vilaplana-Ortego E, Alcaniz-Monge J, Cazorla-Amoros D, Linares-Solano A, Carbon, 41(5), 1001 (2003)
- Drbohlav J, Stevenson W, Carbon, 33(5), 693 (1995)
- Gabrienko AA, Morozov EV, Subramani V, Martyanov ON, Kazarian SG, J. Phys. Chem. C, 119(5), 2646 (2015)
- Pahlavan F, Mousavi M, Hung AM, Fini EH, Fuel, 212, 593 (2018)
- Liu CL, Dong WS, Song JR, Liu L, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 459(1-2), 347 (2007)
- Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC, Yuan WK, Carbon, 45, 785 (2007)
- Kil HS, Jang SY, Ko SH, Jeo YP, Kim HC, Joh HI, Lee SH, J. Ind. Eng. Chem., 58, 349 (2018)
- Matsumoto T, Mochida I, Carbon, 30, 1041 (1992)
- Moreno-Castilla C, Lopez-Ramon M, Carrasco-Marın F, Carbon, 38(14), 1995 (2000)
- Boudou JP, Paredes J, Cuesta A, Martınez-Alonso A, Tascon J, Carbon, 41(1), 41 (2003)
- Lee JS, Kang TJ, Carbon, 35(2), 209 (1997)
- Lim TH, Yeo SY, Sci. Rep., 7(1), 4733 (2017)
- Ehlert GJ, Lin Y, Sodano HA, Carbon, 49, 4246 (2011)
- Chiang YC, Lee CY, Lee HC, Mater. Chem. Phys., 101(1), 199 (2007)
- Wang S, Chen ZH, Ma WJ, Ma QS, Ceram. Int., 32(3), 291 (2006)
- Lim TH, Sang YY, Sci. Rep., 7(1) (2017)
- Andersen SI, Jensen JO, Speight JG, Energy Fuels, 19(6), 2371 (2005)
- Kumar S, Srivastava M, Carbon letters, 16(3), 171 (2015)
- Liu H, Li T, Shi Y, Wang X, Lv J, Zhang W, J. Anal. Appl. Pyrolysis, 108, 310 (2014)