화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.104, 514-520, December, 2021
Fast and opposite temperature responsivity in release behavior of cocontinuous hydrogel composites
E-mail:
For practical implementation, numerous attempts have been made to improve the mechanical durability and response rate of temperature-responsive hydrogels. In this study, the introduction of a cocontinuous structure with polydimethylsiloxane (PDMS), which successfully improved both the properties, was found to reverse the temperature dependence of release behavior. The cocontinuous composites of poly(N-isopropylacrylamide) (PNIPAm) and PDMS were prepared via directional melt crystallization and subsequent infiltration of PDMS. The compressive moduli of composites were more than 30 times higher than those of PNIPAm. Further, the existence of soft hydrophobic PDMS walls against the PNIPAm phases accelerated the deswelling process, and thus, it was more than 2,000 times faster than that of PNIPAm. The deswelling rate increased as the size of PDMS phases increased. The release rate accelerated above the lower critical solution temperature (LCST) and slowed below the LCST, reversibly, thereby opposing the behavior of PNIPAm. Therefore, the fast volume shrinkage of PNIPAm phases confined between PDMS phases is responsible for the unique release behavior of the composites, and not the molecular diffusion processes through hydrogel mesh structures. Collectively, these findings highlight a versatile tool for engineering the release behavior of smart drug carriers based on temperatureresponsive hydrogels.
  1. Tu Y, Peng F, Sui X, Men Y, White PB, van Hest JC, Wilson DA, Nature Chemistry, 9, 480 (2017)
  2. Han D, Lu Z, Chester SA, Lee H, Scientific Reports, 8, 1 (2018)
  3. Michael H, Guillet JE, J. Macromol. Sci. Chem., 2, 1441 (1968)
  4. Taylor LD, Cerankowski LD, J. Polym. Sci.: Polym. Chem. Ed., 13, 2551 (1975)
  5. Gong JP, Science, 344(6180), 161 (2014)
  6. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T, Macromolecules, 36, 5732 (2003)
  7. Gan D, Xing W, Jiang L, Fang J, Zhao C, Ren F, Fang L, Wang K, Lu X, Communications, 10, 1 (2019)
  8. Tao Z, Fan H, Huang J, Sun T, Kurokawa T, Gong JP, ACS Applied Materials Interfaces, 11, 37139 (2019)
  9. Xu X, Bai B, Wang H, Suo Y, ACS Applied Materials Interfaces, 9, 6424 (2017)
  10. Park CH, Bae H, Kim CS, Peck DH, Lee J, Nano Energy, 74 (2020)
  11. Cho SV, Lee JH, J. Ind. Eng. Chem., 85, 81 (2020)
  12. Zhang YF, Chen W, Jing MM, Liu SZ, Feng JT, Wu H, Zhou YW, Zhang X, Ma ZQ, Chem. Eng. J., 361, 1381 (2019)
  13. Galicia JA, Cousin F, Dubois E, Sandre O, Cabuil V, Perzynski R, Soft Matter, 5, 2614 (2009)
  14. Warren H, Shepherd DJ, et al., Sens. Actuators A-Phys., 301 (2020)
  15. Gan J, Guan X, Zheng J, Guo H, Wu K, Liang L, Lu M, RSC Adv., 6, 32967 (2016)
  16. Xie J, Doroshenko M, Jonas U, Butt HJ, Koynov K, ACS Macro Lett., 5, 190 (2016)
  17. Chu LY, Niitsuma T, Yamaguchi T, Nakao S, AIChE J., 49(4), 896 (2003)
  18. Nagata S, Kokado K, Sada K, Chem. Commun., 51, 8614 (2015)
  19. Wu J, Zhou B, Hu Z, Phys. Rev. Lett., 90 (2003)
  20. Masoud H, Alexeev A, Acs Nano, 6, 212 (2012)
  21. Kleinen J, Richtering W, J. Phys. Chem. B, 115(14), 3804 (2011)
  22. Kim J, Cho Y, Lim S, Lee J, ACS Macro Lett, 6, 1119 (2017)
  23. An S, Kim HJ, Chi S, Lee J, Macromol. Rapid Commun., 39, 180010 (2018)
  24. Kang S, Hong SY, Kim N, Oh J, Park M, Chung KY, Lee SS, Lee J, Song JG, ACS Nano, 14, 3660 (2020)
  25. Kim BS, Kim MK, Cho Y, Hamed EE, Gillette MU, Cha H, Miljkovic N, Aakalu VK, Kang K, Son KN, ScienceAdvances, 6, eabc56 (2020)
  26. Lee C, Kang S, Seo J, Lee J, ACS Applied Materials Interfaces, 13, 4442 (2021)
  27. Kim MY, Lee J, Carbohydr. Polym., 84, 1329 (2011)
  28. Zhang H, Hussain I, Brust M, Butler MF, Rannard SP, Cooper AI, Nature Materials, 4, 787 (2005)
  29. Huang C, Leung CLA, Leung P, Grant PS, Adv. Eng. Mater., 11, 200238 (2021)
  30. Kim BS, Lee J, Chem. Eng. J., 301, 158 (2016)
  31. Gao W, Wang M, Bai H, Journal of the Mechanical Behavior of Biomedical Materials, 109 (2020).
  32. Kadam SS, Kramer HJ, ter Horst JH, Crystal Growth Design, 11, 1271 (2011)
  33. Halake KS, Lee J, Carbohydr. Polym., 105, 184 (2014)
  34. Wang Z, Volinsky AA, Gallant ND, J. Appl. Polym. Sci., 131 (2014)
  35. Kim BS, Leong J, Yu SJ, Cho Y, Park CG, Kim DH, Ko E, Im SG, Lee J, Kim YJ, Small, 15, 190076 (2019)
  36. Halake K, Birajdar M, Lee J, J. Ind. Eng. Chem., 35, 1 (2016)