화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.104, 529-543, December, 2021
N-functionalized mesoporous carbon supported Pd nanoparticles as highly active nanocatalyst for Suzuki-Miyaura reaction, reduction of 4-nitrophenol and hydrodechlorination of chlorobenzene
E-mail:,
A series of nanocatalysts derived from immobilization of palladium nanoparticles (Pd NPs) into three dimensional (3D) tube-type architecture of nitrogen (N) functionalized and without functionalized mesoporous carbon CMK-9 is developed by dual agents chemical reduction approach. Herein, for the first time N-functionalized CMK-9 is explored as supports to immobilize Pd NPs and use as multifunctional catalysts for Suzuki-Miyaura cross-coupling reaction, reduction of 4-nitrophenol and hydrodechlorination of chlorobenzene. The Pd@N-CMK-9 catalysts show excellent activities with 100% conversion for Suzuki-Miyaura reaction between iodobenzene and phenylboronic acid and turnover frequency up to 1992 h-1. When use as catalyst for reduction of 4-nitrophenol to 4-aminophenol, it delivers an outstanding rate constant of 4.22 x 10-2 s-1 with activity parameter of 51719 s-1g-1 with respect to only Pd content. The nanocatalysts also demonstrate 100% conversion of chlorobenzene to benzene within 1 h. In addition, the catalyst exhibits remarkable catalytic stability for several cycles without any significant loss of products. The excellent catalytic activities can be attributed to synergistic effect of uniformly dispersed Pd NPs, favorable interaction between metal and support, and tubular interconnected mesoporous framework of N-functionalized CMK-9 that accelerate mass transportation. The present work signifies the versatility of Pd@N-CMK-9 nanocatalysts for various catalytic reactions.
  1. Chandra M, Xu Q, J. Power Sources, 168(1), 135 (2007)
  2. Akbayrak S, Ozkar S, ACS Appl. Mater. Interfaces, 4, 6302 (2012)
  3. Durap F, Zahmakiran M, Ozkar S, Int. J. Hydrog. Energy, 34(17), 7223 (2009)
  4. Yan JM, Zhang XB, Akita T, Haruta M, Xu Q, J. Am. Chem. Soc., 132(15), 5326 (2010)
  5. Metin O, Ozkar S, Int. J. Hydrog. Energy, 36(2), 1424 (2011)
  6. Xu Q, Chandra M, J. Power Sources, 163(1), 364 (2006)
  7. Chen CS, Budi CS, Wu HC, Saikia D, Kao HM, ACS Catal., 7, 8367 (2017)
  8. Veerakumar P, Thanasekaran P, Lu KL, Liu SB, Rajagopal S, ACS Sustainable Chem. Eng., 5, 6357 (2017)
  9. Handa S, Wang Y, Gallou F, Lipshutz BH, Science, 349(6252), 1087 (2015)
  10. Chan-Thaw CE, Savara A, Villa A, Catalysts, 8, 431 (2018)
  11. Balanta A, Godard C, Claver C, Chem. Soc. Rev., 40, 4973 (2011)
  12. Fihri A, Bouhrara M, Nekoueishahraki B, Basset JM, Polshettiwar V, Chem. Soc. Rev., 40, 5181 (2011)
  13. Sonogashira K, Handbook of organopalladium chemistry for organic synthesis, Wiley Interscience, New York, 493, 2002.
  14. Zhou WJ, Zhou ZH, Song SQ, Li WZ, Sun GQ, Tsiakaras P, Xin Q, Appl. Catal. B: Environ., 46(2), 273 (2003)
  15. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H, J. Phys. Chem. B, 108(46), 17886 (2004)
  16. Strasser P, Fan Q, Devenney M, Weinberg WH, Liu P, Norskov JK, J. Phys. Chem. B, 107(40), 11013 (2003)
  17. Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Leger JM, Electrochim. Acta, 49(22-23), 3901 (2004)
  18. Li H, Xin Q, Li W, Zhou Z, Jiang L, Yang S, Sun G, Chem. Commun., 23, 2776 (2004)
  19. Lopes T, Antolini E, Gonzalez ER, Int. J. Hydrog. Energy, 33(20), 5563 (2008)
  20. Yin LX, Liebscher J, Chem. Rev., 107(1), 133 (2007)
  21. Nasrollahzadeh M, Sajadi SM, Maham M, J. Mol. Catal. A-Chem., 396, 297 (2015)
  22. Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Khalaj M, J. Mol. Catal. A-Chem., 396, 31 (2015)
  23. Nasrollahzadeh M, Sajadi SM, J. Colloid Interface Sci., 462, 243 (2016)
  24. Nasrollahzadeh M, Sajadi SM, J. Colloid Interface Sci., 465, 121 (2016)
  25. Wang K, Liu J, Zhang F, Zhang Q, Jiang H, Tong M, Xiao Y, Phan NTS, Zhang F, ACS Appl. Mater. Interfaces, 11, 41238 (2019)
  26. Wang K, Jiang H, Tong M, Xiao Y, Li H, Zhang F, Green Synth. Catal., 1, 79 (2020)
  27. Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M, Chem. Rev., 102(5), 1359 (2002)
  28. Littke AF, Fu GC, Angew. Chem.-Int. Edit., 41, 4176 (2002)
  29. Johnson JA, Makis JJ, Marvin KA, Rodenbusch SE, Stevenson KJ, J. Phys. Chem. C, 117, 22644 (2013)
  30. Li X, Dong FP, Zhang LH, Xu QQ, Zhu XY, Liang SM, Hu LJ, Xie HB, Chem. Eng. J., 372, 516 (2019)
  31. Swain S, Bhavya MB, Kandathil V, Bhol P, Samal AK, Patil SA, Langmuir, 36(19), 5208 (2020)
  32. Megharaj M, Person HW, Venkateswarlu K, Arch. Environ. Contam. Toxicol., 121, 5208 (2020)
  33. Kovacic P, Somanathan R, J. Appl. Toxicol., 34, 810 (2014)
  34. Chen S, Ling L, Jiang SF, Jiang H, Green Chem., 22, 5730 (2020)
  35. Tang Q, Yuan Z, Jin S, Yao K, Yang H, Chi Q, Liu B, React. Chem. Eng., 5, 58 (2020)
  36. Al-Adilee KJ, Atyha SA, Asian J. Chem., 30, 280 (2018)
  37. Borges RS, Pereira GAN, Vale JKL, Franca LCS, Monteiro MC, Alves CN, da Silva ABF, Chem. Biol. Drug Des., 81, 414 (2013)
  38. Shen J, Kromidas L, Schultz T, Bhatia S, Food Chem. Toxicol., 74, 164 (2014)
  39. Naseem K, Begum R, Farooqi ZH, Environ. Sci. Pollut. Res., 24, 6446 (2017)
  40. Slimane AB, Al-Hossainy AF, Zoromba MS, J. Mater. Sci. Mater. Electron., 29, 8431 (2018)
  41. Nangoi IM, Kiyohara PK, Rossi LM, Appl. Catal. B: Environ., 100(1-2), 42 (2010)
  42. Dong Z, Le X, Liu Y, Dong C, Ma J, J. Mater. Chem. A, 2, 18775 (2014)
  43. Yao QL, Lu ZH, Huang W, Chen X, Zhu J, J. Mater. Chem. A, 4, 8579 (2016)
  44. Yan JM, Wang ZL, Wang HL, Jiang Q, J. Mater. Chem., 22, 10990 (2012)
  45. Zou XX, Huang XX, Goswami A, Silva R, Sathe BR, Mikmekova E, Asefa T, Angew. Chem.-Int. Edit., 53, 4372 (2014)
  46. Huang W, Kuhn JN, Tsung CK, Zhang Y, Habas SE, Yang P, Somorjai GA, Nano Lett., 8, 2027 (2008)
  47. Luo YC, Liu YS, Huang Y, Liu XY, Mou CY, Int. J. Hydrog. Energy, 37, 7280 (2013)
  48. Budi CS, Wu HC, Chen CS, Saikia Kao HM, ChemSusChem, 9, 2326 (2016)
  49. Sakai T, Alexandridis P, Nanotechnology, 16, S344 (2005)
  50. Huang H, Tan M, Wang X, Zhang M, Guo S, Zou X, Lu X, ACS Appl. Mater. Interfaces, 10, 5413 (2018)
  51. Zheng L, Dong Y, Chi B, Cui Z, Deng Y, Shi X, Du L, Liao S, Small, 15, 180352 (2019)
  52. Zhan T, Liu W, Teng J, Yue C, Li D, Wang S, Tan H, Chem. Commun., 55, 2620 (2019)
  53. Ryoo R, Joo SH, Jun S, J. Phys. Chem. B, 103(37), 7743 (1999)
  54. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O, J. Am. Chem. Soc., 122(43), 10712 (2000)
  55. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R, Nature, 412, 169 (2001)
  56. Che SN, Lund K, Tatsumi T, Iijima S, Joo SH, Ryoo R, Terasaki O, Angew. Chem.-Int. Edit., 42, 2182 (2003)
  57. Choi HR, Woo H, Jang S, Cheon JY, Kim C, Park J, Park KH, Joo HS, ChemCatChem, 4, 1587 (2012)
  58. Liu Y, Bai X, Li S, Microporous Mesoporous Mater., 260, 40 (2018)
  59. Wang Z, Chen W, Han Z, Zhu J, Lu N, Yang Y, Ma D, Chen Y, Huang S, Nano Res., 7, 1254 (2014)
  60. Lee J, Woo J, Nguyen-Huy C, Lee MS, Joo SH, An K, Catal. Today, 350, 71 (2020)
  61. Liu Z, Dong W, Cheng S, Guo S, Shang N, Gao S, Feng C, Wang C, Wang Z, Catal. Commun., 95, 50 (2017)
  62. Zhang Y, Cao P, Zhang H, Yin G, Zhao J, Catal. Commun., 129 (2019)
  63. Li H, Chen C, Yan D, Wang Y, Chen R, Zou Y, Wang S, J. Mater. Chem. A, 7, 23432 (2019)
  64. Saikia D, Deka JR, Lin CW, Lai YH, Zeng YH, Chen PH, Kao HM, Yang YC, ChemSusChem, 13, 2952 (2020)
  65. Kim TW, Solovyov LA, J. Mater. Chem., 16, 1445 (2006)
  66. Deka JR, Saikia D, Chen PH, Chen KT, Kao HM, Yang YC, Mater. Res. Bull., 125 (2020)
  67. Yan JM, Zhang XB, Han S, Shioyama H, Xu Q, Angew. Chem.-Int. Edit., 47, 2287 (2008)
  68. Chang JK, Chen CY, Tsai WT, Nanotechnology, 20 (2009)
  69. Chen H, Sun F, Wang J, Li W, Qiao W, Ling L, Long D, J. Phys. Chem. C, 117, 8318 (2013)
  70. Calcagno G, Agostini M, Xiong S, Matic A, Palmqvist AEC, Cavallo C, Energies, 13, 4998 (2020)
  71. Zhang K, Wang C, Bin D, Wang J, Yan B, Shiraishi Y, Du Y, Catal. Sci. Technol., 6, 6441 (2016)
  72. Oliveira RL, Kerstien J, Schomacker R, Thomas A, Catal. Sci. Technol., 10, 1385 (2020)
  73. Arrigo R, Wrabetz S, Schuster ME, Wang D, Villa A, Rosenthal D, Girsgdies F, Weinberg G, Prati L, Schlogl R, Su DS, Phys. Chem. Chem. Phys., 14, 10523 (2012)
  74. Kusumawati EN, Sasaki T, Green Energy Environ., 4, 180 (2019)
  75. Chen YH, Hung HH, Huang MH, J. Am. Chem. Soc., 131(25), 9114 (2009)
  76. Li Y, Xu L, Xu B, Mao Z, Xu H, Zhong Y, Zhang L, Wang B, Shi X, ACS Appl. Mater. Interfaces, 9, 17155 (2017)
  77. Singh AS, Shelkar RS, Nagarkar JM, Catal. Lett., 145(2), 723 (2015)
  78. Wei SY, Ma ZY, Wang P, Dong ZP, Ma JT, J. Mol. Catal. A-Chem., 370, 175 (2013)
  79. Liu H, Zhang L, Wang N, Su DS, Angew. Chem.-Int. Edit., 53, 12634 (2014)
  80. Sun JW, Fu YS, He GY, Sun XQ, Wang X, Appl. Catal. B: Environ., 165, 661 (2015)
  81. Dhenadhayalan N, Lin TW, Veerakumar P, Lin KC, ChemNanoMat, 4, 1262 (2018)
  82. Qiao XQ, Zhang ZW, Tian FY, Hou DF, Tian ZF, Li DS, Zhang Q, Cryst. Growth Des., 17, 3538 (2017)
  83. Gao Y, Hu G, Zhong J, Shi Z, Zhu Y, Su DS, Wang J, Bao X, Ma D, Angew. Chem.-Int. Edit., 52, 2109 (2013)
  84. Xiong W, Wang L, Cai G, Yang Y, Hao F, Liu P, Luo H, ChemistrySelect, 2, 11244 (2017)
  85. Thawarkar SR, Khupse ND, Kumar A, ChemistrySelect, 2, 6833 (2017)
  86. George A, Selvan D, Mandal S, ChemistrySelect, 2, 9718 (2017)