화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.104, 555-570, December, 2021
Tetracycline degradation using combined system of dielectric barrier discharge air plasma and zeolites synthesized at different Na2O/SiO2 ratios
E-mail:
In this work, a combination of synthesized zeolite with a Dielectric Barrier Discharge (DBD) air plasma reactor was applied for the removal of tetracycline (TC) from effluents. The zeolites with different Na2O/SiO2 ratios were synthesized and inserted in a DBD reactor. The as-prepared zeolites were characterized by FTIR, SEM, BET, EDX, XRD, and TEM. The XRD results showed that the P-type zeolite turned to Y-type zeolite with an increasing Na2/SiO2 ratio from 0.5 to 1.5 and 2.5. The TC degradation experiments indicated that 79.1% of the initial TC was removed from the solution by the hybrid plasma- zeolite (Na2O/ SiO2 ratio of 0.5) system after 45 min. The plasma in synergy with zeolite caused the changing amount of long-life oxidants in the system and converted it to higher reactive species. The combined system could reduce around 17 and 10% of the total organic carbon (TOC) and chemical oxygen demand (COD) more than the sole DBD system, respectively. Losing just 8% of the initial efficiency of the hybrid system after four successive runs revealed the stability of the proposed system. The radical trapping experiment method indicated that the role of ·OH in the TC degradation was more critical than that of O2·-.
  1. Sharma G, Bhogal S, Kumar A, Naushad M, Sharma S, Ahamad T, Stadler FJ, Adv. Powder Technol., 31(10), 4310 (2020)
  2. Maged A, et al., J. Hazard. Mater., 384 (2020)
  3. Wang H, et al., Chemosphere, 274 (2021)
  4. Guo H, et al., Chem. Eng. J., 425 (2021)
  5. Wang X, et al., Chin. J. Catal., 39(10), 1672 (2018)
  6. Hafeez A, et al., Sep. Purif. Technol., 269 (2021)
  7. Cheng J, et al., Chemosphere (2020).
  8. Abdelrahman EA, et al., J. Hazard. Mater., 401 (2021)
  9. Fan J, et al., J. Hazard. Mater., 401 (2020)
  10. Bandura L, et al., Fuel, 283 (2021)
  11. Saceda JJF, Rintramee K, Khabuanchalad S, Prayoonpokarach S, de Leon RL, Wittayakun J, J. Ind. Eng. Chem., 18(1), 420 (2012)
  12. Wittayakun J, Khemthong P, Prayoonpokarach S, Korean J. Chem. Eng., 25(4), 861 (2008)
  13. Ansari M, et al., Sep. Purif. Technol., 251 (2020)
  14. Jahanmiri A, Rahimpour MR, Shirazi MM, Hooshmand N, Taghvaei H, Chem. Eng. J., 191, 416 (2012)
  15. Hafeez A, et al., Chem. Eng. Process.-Process Intensification, 159, (2021).
  16. Xing C, et al., Chemosphere, 277 (2021)
  17. Valerio A, et al., Chem. Eng. Process.-Process Intensification, 149, (2020).
  18. Makama A, et al., Chemosphere (2020).
  19. Diaz M, et al., Appl. Catal. B: Environ., 291 (2021)
  20. Christidis GE, et al., Appl. Clay Sci., 24(1), 79 (2003)
  21. Allahyari S, Haghighi M, Ebadi A, Hosseinzadeh S, Energy Conv. Manag., 83, 212 (2014)
  22. Elaiopoulos K, Perraki T, Grigoropoulou E, Microporous Mesoporous Mater., 134(1), 29 (2010)
  23. Blanco Varela MT, et al., Appl. Clay Sci., 33(2), 149 (2006)
  24. Bandopadhyay AK, Int. J. Coal Geol., 81(1), 73 (2010)
  25. Hoseini S, et al., J. Clean Prod., 232, 1134 (2019)
  26. Cychosz KA, et al., Chem. Soc. Rev., 46(2), 389 (2017)
  27. Wang XM, Cheng HJ, Chai PC, Bian JH, Wang XM, Liu Y, Yin XB, Pan SD, Pan ZJ, Energy Fuels, 34(10), 12204 (2020)
  28. Zhang HX, Cheng S, Li B, Cheng XW, Cheng QF, Sep. Purif. Technol., 202, 242 (2018)
  29. Chen JY, Du YL, Shen ZJ, Lu SS, Su KZ, Yuan SJ, Hu ZH, Zhang AY, Feng JW, Sep. Purif. Technol., 179, 135 (2017)
  30. Zhang YZ, Deng SH, Sun BY, Xiao H, Li L, Yang G, Hui Q, Wu J, Zheng JT, J. Colloid Interface Sci., 347(2), 260 (2010)
  31. Petrovic M, et al., Sep. Purif. Technol., 269 (2021)
  32. Guo H, et al., Chemosphere, 159, 221 (2016)
  33. Tang SF, Lu N, Li J, Wu Y, Thin Solid Films, 521, 257 (2012)
  34. Crema APS, et al., Chemosphere, 244 (2020)
  35. Kan H, et al., J. Hazard. Mater., 383 (2020)
  36. Heidari S, Haghighi M, Shabani M, Ultrason. Sonochem., 43, 61 (2018)
  37. Hu G, et al., Chem. Eng. J. (2021).
  38. Shang K, et al., Chem. Eng. (2021).
  39. Shang KF, Wang XJ, Li J, Wang H, Lu N, Jiang N, Wu Y, Chem. Eng. J., 311, 378 (2017)
  40. Guo H, Jiang N, Wang HJ, Shang KF, Lu N, Li J, Wu Y, Sep. Purif. Technol., 218, 206 (2019)
  41. Chakraborty V, Das P, Roy P, Int. J. Environ. Sci. Technol., 18(7), 1953 (2021)
  42. Wu Q, et al., Appl. Catal. B: Environ., 263 (2020)
  43. Xu L, et al., Sep. Purif. Technol., 253 (2020)
  44. Tang SF, Yuan DL, Rao YD, Li MH, Shi GM, Gu JM, Zhang TH, J. Hazard. Mater., 366, 669 (2019)
  45. Zhang AY, et al., J. Hazard. Mater., 390 (2020)
  46. Singh G, Sharma M, Vaish R, Adv. Powder Technol., 31(4), 1771 (2020)
  47. Jiang B, Zheng JT, Liu Q, Wu MB, Chem. Eng. J., 204, 32 (2012)
  48. Li H, et al., Chem. Eng. J., 390 (2020)
  49. Farhadi ARK, et al., J. Taiwan Inst. Chem. Eng., 120, 77 (2021)
  50. Lee JC, Kim HJ, Kim HW, Lim HW, J. Ind. Eng. Chem., 98, 383 (2021)
  51. Tian Y, Zhang X, Wang Y, Cui Z, Tang J, J. Ind. Eng. Chem., 94, 205 (2021)
  52. Magureanu M, et al., J. Hazard. Mater. (2021).