- Previous Article
- Next Article
- Table of Contents
Applied Mathematics and Optimization, Vol.84, No.1, 649-682, 2021
Asymptotic Optimality of a First-Order Approximate Strategy for an Exponential Utility Maximization Problem with a Small Coefficient of Wealth-Dependent Risk Aversion
In Delong [8] we investigate an exponential utility maximization problem for an insurer who faces a stream of non-hedgeable claims. We assume that the insurer's risk aversion coefficient consists of a constant risk aversion and a small amount of wealth-dependent risk aversion. We apply perturbation theory and expand the equilibrium value function of the optimization problem on the parameter epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} controlling the degree of the insurer's risk aversion depending on wealth. We derive a candidate for the first-order approximation to the equilibrium investment strategy. In this paper we formally show that the zeroth-order investment strategy pi 0*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _0<^>*$$\end{document} postulated by Delong (Math Methods Oper Res 89:73-113, 2019) performs better than any strategy pi 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _0$$\end{document} when we compare the asymptotic expansions of the objective functions up to order O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1)$$\end{document} as epsilon -> 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \rightarrow 0$$\end{document}, and the first-order investment strategy pi 0*+pi 1*epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _0<^>*+\pi _1<^>*\epsilon $$\end{document} postulated by Delong (Math Methods Oper Res 89:73-113, 2019) is the equilibrium strategy in the class of strategies pi 0*+pi 1 epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi <^>*_0+\pi _1\epsilon $$\end{document} when we compare the asymptotic expansions of the objective functions up to order O(epsilon 2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\epsilon <^>2)$$\end{document} as epsilon -> 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \rightarrow 0$$\end{document}, where epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} denotes the parameter controlling the degree of the insurer's risk aversion depending on wealth.
Keywords:Wealth-dependent risk aversion;PDEs;Perturbation theory;Asymptotic optimality;Nash equilibrium