화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.105, No.14-15, 6059-6072, 2021
Performance of QuantaMatrix Microfluidic Agarose Channel system integrated with mycobacteria growth indicator tube liquid culture
The QuantaMatrix Microfluidic Agarose Channel (QMAC) system was used for rapid drug susceptibility testing (DST). Here, we performed DST using QMAC integrated with the mycobacteria growth indicator tube (MGIT) liquid culture employing a specially designed cross agarose channel for the tuberculosis chip. MGIT-, QMAC-, and Lowenstein-Jensen (LJ)-DSTs were performed using 13 drugs. The protocol for QMAC-DST was optimized using the inoculum obtained after the disaggregation of Mycobacterium tuberculosis clumps in MGIT culture. The completion times of QMAC-DST and MGIT-DST were analyzed, and the results of all three DSTs were compared. Discrepant results were analyzed using line probe assays and DNA sequencing. Nontuberculous mycobacteria were distinguished using the rho-nitrobenzoic acid inhibition test. The overall agreement rate of QMAT-DST and LJ-DST was 97.0% and that of QMAT-DST and MGIT-DST was 86.3%. An average turnaround time for DST was 5.4 days, which was considerably less than the time required for MGIT-DST. The overall time required to obtain DST results using QMAC-DST integrated with MGIT culture was an average of 18.6 days: 13.2 days for culture and identification and 5.4 days for DST. Hence, QMAC-DST integrated with liquid culture can be used to perform DSTs with short turnaround times and effective detection.