화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.105, No.12, 5173-5187, 2021
Dynamic control of the distribution of carbon flux between cell growth and butyrate biosynthesis in Escherichia coli
Microbial cell factories offer an economic and environmentally friendly method for the biosynthesis of acetyl-CoA-derived chemicals. However, the static control of carbon flux can cause direct and indirect competition for acetyl-CoA between cell growth and chemical biosynthesis, limiting the efficiency of microbial cell factories. Herein, recombinase-based genetic circuits were developed to achieve the optimal distribution of acetyl-CoA between cell growth and butyrate biosynthesis. First, three dynamic devices-a turn-on switch, a turn-off switch, and a recombinase-based inverter (RBI)-were constructed based on Bxb1 recombinase. Then, the turn-on switch was used to dynamically control the butyrate biosynthetic pathway, which directly improved the consumption of acetyl-CoA. Next, the turn-off switch was applied to dynamically control cell growth, which indirectly enhanced the supply of acetyl-CoA. Finally, an RBI was adopted for the dynamic dual control of the distribution of acetyl-CoA between cell growth and butyrate biosynthesis. The final butyrate production rate was increased to 34 g/L, with a productivity of 0.405 g/L/h. The strategy described herein will pave the way for the development of high-performance microbial cell factories for the production of other desirable chemicals.