Applied Microbiology and Biotechnology, Vol.105, No.8, 3019-3025, 2021
An overview of Trichoderma reesei co-cultures for the production of lignocellulolytic enzymes
Biorefineries are core facilities for implementing a sustainable circular bioeconomy. These facilities rely on microbial enzymes to hydrolyze lignocellulosic substrates into fermentable sugars. Fungal co-cultures mimic the process of natural biodegradation and have been shown to increase certain enzyme activities. Trichoderma reesei and its many mutant strains are major cellulase producers and are heavily utilized as a source of carbohydrate-active enzymes. Several reports have demonstrated that T. reesei co-cultures present higher enzyme activities compared with its monocultures, especially in the context of beta-glucosidase activity. The performance of T. reesei during co-culturing has been assessed with several fungal partners, including Aspergillus niger, one of the most recurrent partners. Various aspects of co-cultivation still need further investigation, especially regarding the molecular interactions between fungi in controlled environments and the optimization of the resulting enzyme cocktails. Since plenty of genetic and physiological data on T. reesei is available, the species is an outstanding candidate for future co-culture investigations. Co-cultures are still a developing field for industrial enzyme production, and many aspects of the technique need further improvement before real applications.