화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.59, No.4, 508-513, November, 2021
PEMFC에 사용되는 강화막과 비강화막의 Fenton 반응에 의한 열화 비교
Comparison of Degradation due to Fenton Reaction between Reinforced and Non-reinforced Membranes Used in PEMFC
E-mail:
초록
고분자전해질 연료전지(PEMFC)의 내구성을 향상시키기 위해서는 필수적으로 고분자막의 내구성이 향상되어야한다. 고분자막의 내구성을 향상시키기 위해서 e-PTFE 지지체와 라디칼 제거제(Radical Scavenger)가 첨가된다. 본 연구에서는 e-PTFE 지지체가 들어간 강화막(Reinforced Membrane)과 비강화막(Non-reinforced Membrane)의 화학적 내구성을 Fenton 반응에 의해 비교하고자 하였다. 라디칼 제거제가 첨가되지 않은 고분자막의 Fenton 실험에서는 작게 절단한 시편의 단면을 통한 과산화수소 용액과 철이온의 흡수율이 강화막에서 더 높아 불소유출농도가 더 높게 나타났다. 라디칼 제거제의 종류와 첨가량에 따라 강화막의 불소유출농도가 3배 이상의 큰 차이가 발생해서 라디칼 제거제의 영향이 지지체의 영향보다 강한 것을 알 수 있었다.
In order to improve the durability of a proton exchange membrane fuel cells (PEMFC), it is essential to improve the durability of the polymer membrane. In order to improve the durability of the membrane, an e-PTFE support and a radical scavenger are added. In this study, the chemical durability of the reinforced membrane with e-PTFE support and the non-reinforced membrane was compared by Fenton reaction. In the Fenton experiment of the polymer membrane without the addition of a radical scavenger, the absorption rate of hydrogen peroxide solution and iron ions through the cross section of the specimen cut into small pieces was higher in the reinforced membrane, so that the fluorine outflow concentration was higher. According to the type and amount of radical scavenger added, the fluorine outflow concentration of the reinforced membrane has a large difference of more than 3 times, indicating that the effect of the radical scavenger was stronger than that of the support.
  1. Wang GJ, Yu Y, Liu H, Gong CL, Wen S, Wang XH, Tu ZK, Fuel Process. Technol., 179, 203 (2018)
  2. Department of Energy, https://www.energy.gov(2016).
  3. New Energy and Industrial Technology Development Organization, http://wwwnedo.go.jp/english/index.html(2016).
  4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org(2016).
  5. Ministry of Science and Technology of the People’s Republic of China, http://en.most.gov.cn/eng/index.htm(2016).
  6. Lai YH, Mittelsteadt CK, Gittleman CS, Dillard DA, J. Fuel Cell Sci. Technol., 6(2): 021002, https://doi.org/10.1115/1.2971045(2009).
  7. Spernjak D, Mukherjee PP, Mukundan R, Davey J, Hussey DS, Jcobson D, Borup RL, ECS Trans., 33(1), 1451 (2010)
  8. MacKinnon SM, et al., Encyclopedia of Electrochemical Power Sources, Elsvier, Amsterdam, 2009.
  9. Craig S, et al., Academic Press, Boston 2012.
  10. Crum M, Liu W, ECS Trans., 3(1), 541 (2006)
  11. Tang YL, Kusoglu A, Karlsson AM, Santare MH, Cleghorn S, Johnson WB, J. Power Sources, 175(2), 817 (2008)
  12. Khattra NS, Lu ZW, Karlsson AM, Santare MH, Busby FC, Schmiedel T, J. Power Sources, 228, 256 (2013)
  13. Kusoglu A, Santare MH, Karlsson AM, Cleghorn S, Johnson WB, ECS Trans, 157(5), B705 (2010)
  14. Kusoglu A, Karlsson AM, Santare MH, Cleghorn S, Johnson WB, J. Power Sources, 170(2), 345 (2007)
  15. Wang F, Tang HL, Pan M, Li DX, Int. J. Hydrog. Energy, 33(9), 2283 (2008)
  16. Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z, J. Power Sources, 158(2), 1222 (2006)
  17. Kim T, Lee J, Cho G, Park K, Korean Chem. Eng. Res., 44(6), 597 (2006)
  18. Pearman BP, Mohajeri N, Slattery DK, Hampton MD, Seal S, Cullen DA, Polym. Degrad. Stabil., 98, 1766 (2013)
  19. Hao JK, Jiang YY, Gao XQ, Xie F, Shao ZG, Yi BL, J. Membr. Sci., 522, 23 (2017)
  20. Zhu Y, Pei SP, Tang JK, Li H, Wang L, Yuan WZ, Zhang YM, J. Membr. Sci., 432, 66 (2013)
  21. Chang Z, Yan H, Tian J, Pan H, Pu H, Polym. Degrad. Stabil., 138, 98 (2017)
  22. Oh SH, Lim DH, Lee DW, Park KP, Korean Chem. Eng. Res., 58(4), 524 (2020)
  23. Hwang BC, Oh SH, Lee MS, Lee DH, Park KP, Korean J. Chem. Eng., 35(11), 2290 (2018)
  24. Shi SW, Weber AZ, Kusoglu A, J. Membr. Sci., 516, 123 (2016)