화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.59, No.4, 574-583, November, 2021
교대로 운전되는 두 개의 UV/광촉매반응기로 구성된 폐가스 처리시스템의 성능 및 특성 평가
Performance of Waste-air Treating System Composed of Two Alternatively-operating UV/photocatalytic Reactors and Evaluation of Its Characteristics
E-mail:
초록
광촉매 재생을 통하여 교대로 운전되는, TiO2-anatase 광촉매를 담지한 다공성 SiO2 담체를 충전한 두 개의 환형 UV/광촉매 반응기(유효 부피: 1.5 L) 중에서, 광촉매 활성이 재생된 하나는 32 일/회 동안 운전시키고 광촉매가 비활성화 된 다른 하나는 15W UV-A 광원을 켠 상태에서 100 °C의 고온 공기에 의하여 광촉매를 재생시키면서, 에탄올(100ppmv)과 황화수소(10 ppmv)를 동시 함유하는 3 L/min 유량의 폐가스를 교대로 처리하는 광촉매반응기 시스템의 지속적 운전을 수행하였다. 교대로 운전되는 광촉매반응기 시스템(A)의 에탄올 제거 거동으로서, 광촉매 반응기 시스템의 첫 번째, 두 번째 및 세 번째 운전의 정상 상태에서의 에탄올 제거효율 값은 각각 약 60, 55 및 54%를 유지하였다. 한편 광촉매반응기 시스템(A)의 황화수소의 제거효율 거동은, 각 운전 횟수에서 에탄올 제거효율의 거동과 다르게, 시간이 지남에 따라서 황화수소 제거효율의 감소 및 더 낮은 정상상태 도달의 반복적인 추세를 보였다. 그럼에도 불구하고 황화수소 제거에 있어서 각 운전 기간이 경과한 후에 황화수소 제거효율 값은 첫 번째, 두 번째 및 세 번째 운전 후에각각 약 80, 75 및 73%를 유지하여서 에탄올 제거효율 값인 약 60, 55 및 54%보다 각각 약 20, 20 및 19%만큼 높았다. 따라서 다공성 SiO2 광촉매 담체의 흡착을 가역적 비활성화로 간주하고 흡착을 포함한 광촉매의 가역적 비활성화에 의한 제거효율 감소분이 재생 후 사용 횟수에 무관하게 일정하다고 가정할 때에, 사용 횟수가 세 번째에서 광촉매의 비가역적 비활성화에 따른 에탄올 및 황화수소 제거효율 감소분의, 직전 사용 횟수보다 증가 폭은 각각 약 1 및 2%로써 사용 횟수가 두 번째인 경우의 각각 약 5 및 5%보다 미미하거나 더 적어졌다. 한편 교대로 운전되는 다른 환형 광촉매반응기 시스템에서도 환형 광촉매반응기 시스템의 추세와 거의 동일하게 관찰되었다.
Waste air containing ethanol (100 ppmv) and hydrogen sulfide (10 ppmv) was continuously treated by waste air-treating system composed of two annular photocatalytic reactors (effective volume: 1.5 L) packed with porous SiO2 media carrying TiO2-anatase photocatalyst, one of which was alternately operated for 32 d/run while the other was regenerated by 100 °C hot air with 15 W UV(-A)-light on. As its elimination-behavior of ethanol, the removal efficiencies of ethanol at 1st, 2nd and 3rd operation of the photocatalytic reactor system(A), turned out to be ca. 60, 55 and 54%, respectively, at their steady state condition. Unlike the elimination-behavior of ethanol, its hydrogen sulfide-elimination behavior showed repeated decrease of hydrogen sulfide removal efficiency by its resultant arrival at a lower level of steady state condition. Nevertheless, the removal efficiencies of hydrogen sulfide at 1st, 2nd and 3rd operation of the photocatalytic reactor system, turned out to be ca. 80, 75 and 73%, respectively, at their final steady state condition, higher by ca. 20, 20 and 19% than those of ethanol, respectively. Therefore, assuming that adsorption on porous SiO2-photocatalyst carrier was regarded to belong to a reversible deactivation and that decreased % of removal efficiency due to the reversible deactivation of photocatalyst including the adsorption was independent of the number of its use upon regeneration, the increments of the decreased % of removal efficiency of ethanol and hydrogen sulfide, due to an irreversible deactivation of photocatalyst, for the 3rd use of regenerated photocatalyst, compared with the 2nd use of regenerated photocatalyst, were ca. 1 and 2%, respectively, which was insignificant or the less than those of ca. 5 and 5%, respectively, for the 2nd use of regenerated photocatalyst compared with the 1st use of virgin photocatalyst. This trend of the photocatalytic reactor system was observed to be similar to that of the other alternately-operating photocatalytic reactor system.
  1. Lim KH, Lee EJ, Korean Patent No. 10-1275428(2013).
  2. Khodadadian F, de Boer MW, Poursaeidesfahani A, van Ommen JR, Stankiewicz AI, Lakerveld R, Chem. Eng. J., 333, 456 (2018)
  3. Thevenet F, Guillard C, Rousseau A, Chem. Eng. J., 244, 50 (2014)
  4. Abou Saoud W, Assadi AA, Guiza M, Bouzaza A, Aboussaoud W, Ouederni A, Soutrel I, Wolbert D, Rtimi S, Appl. Catal. B: Environ., 213, 53 (2017)
  5. Chen Z, Peng Y, Chen J, Wang C, Yin H, Wang H, You C, Li J, Environ. Sci. Technol., 54, 14465 (2020)
  6. Nakano K, Obuchi E, Takagi S, Yamamoto R, Tanizaki T, Taketomi M, Eguchi M, Ichida K, Suzuki M, Hashimoto A, Sep. Purif. Technol., 34(1-3), 67 (2004)
  7. Wang W, Song M, Microporous Mesoporous Mater., 96(1), 255 (2006)
  8. Imagawa H, Tanaka T, Takahashi N, Matsunaga S, Suda A, Shinjoh H, Appl. Catal. B: Environ., 86(1-2), 63 (2009)
  9. Meng M, Guo L, He J, Lai Y, Li Z, Li X, Catalyst Today, 175, 72 (2011)
  10. Kolinko PA, Smirniotis PG, Kozlov DV, Vorontsov AV, J. Photochem. Photobiol. A-Chem., 232, 1 (2012)
  11. Vikrant K, Kim KH, Deep A, Appl. Catal. B: Environ., 259, 118025 (2019)
  12. Vorontsov AV, Dubovitskaya VP, J. Catal., 221(1), 102 (2004)
  13. Arana J, Dona-Rodriguez JM, Gonzalez-Diaz O, Rendon ET, Melian JAH, Colon G, Navio JA, Pena JP, J. Mol. Catal. A-Chem., 215(1-2), 153 (2004)
  14. Yang X, Koziel JA, Laor Y, Zhu W, van Leeuwen J, Jenks, Catalysts, 10(6), 607 (2020)
  15. Zhu W, Koziel JA, Maurer DL, Atmosphere, 8(6), 103 (2017)
  16. Maurer DL, Koziel JA, Chemosphere, 221, 778 (2019)
  17. Lee EJ, Park H, Lim KH, Korean Chem. Eng. Res., 50(6), 945 (2012)
  18. Lee EJ, Lim KH, Korean Chem. Eng. Res., 50(6), 952 (2012)
  19. Lim KH, Korean Chem. Eng. Res., 51(1), 80 (2013)
  20. Lim KH, Park SW, Lee EJ, Hong SH, Korean J. Chem. Eng., 22(1), 70 (2005)
  21. Lee EJ, Lim KH, Korean Chem. Eng. Res., 51(2), 272 (2013)
  22. Lee EJ, Lim KH, J. Chem. Eng. Jpn., 46(9), 636 (2013)
  23. Lee EJ, Lim KH, J. Chem. Eng. Jpn., 46(9), 636 (2013)
  24. Lee EJ, Lim KH, Korean Chem. Eng. Res., 52(2), 191 (2014)
  25. Lee EJ, Lim KH, Korean Chem. Eng. Res., 48(3), 382 (2010)