화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.105, 63-73, January, 2022
A novel conversion for blast furnace slag (BFS) to the synthesis of hydroxyapatite-zeolite material and its evaluation of adsorption properties
E-mail:
Blast furnace slag (BFS), as a byproduct from manufacturing iron, served as a cost-effective raw material for preparation of hydroxyapatite-zeolite composite material (HAP-ZE); this research introduces a way of synthesizing hydroxyapatite-zeolite composite material (HAP-ZE) using BFS with alkaline fusion and hydrothermal treatment. According to analysis with XRD, FT-IR, BET, ICP, FE-SEM, EDX and elemental mapping, the major phases in the HAP-ZE composite material synthesized under the most desirable conditions (at aging time of 6 h and at Ca/P ratio (starting gel) = 1.67) were identified to be zeolite and HAP with molar ratio of Ca/P = 1.61, Si/Al = 1.31, Na/Al = 1.75 and with a mean surface area of 44.22 m2.g-1. Moreover, the research found that the minor metals (Mg, Fe, K, etc.) generated from BFS have little influence on the synthesis of HAP-ZE. The thus obtained HAP-ZE material has a great adsorption performance in removing Mn2+, NH4 + and phosphate ions mixed in water, on grounds of the higher ion-exchange capacities and abundantly existing Ca2+ ions in HAP-ZE structure. This novel process makes synthesizing HAPZE composite material from BFS possible and lays a great foundation for effective application of BFS.
  1. Kuwahara Y, Ohmichi T, Kamegawa T, Mori K, Yamashita H, J. Mater. Chem., 20, 5052 (2010)
  2. Ren QQ, Zhang YZ, Long Y, Zou ZS, Pei JJ, Ceram. Int., 44, 11628 (2018)
  3. Harish ML, Narendra H, Afzal MA, J. Comput. Theor. Nanos., 17, 4304 (2020)
  4. Han D, Kim JH, Han M, Yi ST, KSCE J. Civ. Eng., 24, 902 (2020)
  5. Lee T, Kim S, Park SG, Materials, 13, 4620 (2020)
  6. Kuwahara Y, Tamagawa S, Fujitani T, Yamashita H, B. Chem, Soc. Jpn., 89, 472 (2016)
  7. Oguz E, J. Hazard. Mater., 114(1-3), 131 (2004)
  8. Yamaguchi S, Hongo T, Environ. Sci. Pollut. R., 20, 1 (2020)
  9. Tian P, Dong HW, Wu XM, Huo LQ, Xue YK, Energ. Metall. Ind., 39, 9 (2020)
  10. Czuma N, Katarzyna Z, Motak M, Galvez ME, Costa PD, Fuel, 267 (2020)
  11. Shawabkeh R, Al-Harahsheh A, Hami M, Khlaifat A, Fuel, 83(7-8), 981 (2004)
  12. Kordatos K, Gavela S, Ntziouni A, Pistiolas KN, Kyritsi A, Kasselouri-Rigopoulou V, Microporous Mesoporous Mater., 115, 189 (2008)
  13. Belviso C, Perchiazzi N, Cavalcante F, Ind. Eng. Chem. Res., 58(44), 20472 (2019)
  14. Belviso C, Abdolrahimi M, Peddis D, et al., Microporous Mesoporous Mater., 319 (2021)
  15. Belviso C, Piancastelli A, Sturini M, Belviso S, Microporous Mesoporous Mater., 299 (2020)
  16. Li XY, Jian Y, Liu XQ, Shi LY, Zhang DY, Su LB, Acs. Sustainable. Chem. Eng., 5, 6124 (2017)
  17. Anuwattana R, Balkus KJ, Asavapisit S, Khummongkol P, Microporous Mesoporous Mater., 111, 260 (2008)
  18. Li CX, Zhong H, Wang S, Xue JR, Zhang ZY, Colloids Surf. A: Physicochem. Eng. Asp., 470, 258 (2015)
  19. Novembre D, Sabatino BD, Gimeno D, Garcia-Valles M, Martinez-Manent S, Microporous Mesoporous Mater., 75, 1 (2004)
  20. Lee CH, Lee MG, J. Environ. Sci. Int., 27, 1215 (2018)
  21. Kuwahara Y, Ohmichi T, Mori K, Katayama I, Yamashita H, J. Mater. Sci., 43(7), 2407 (2008)
  22. Sugano Y, Sahara R, Murakami T, Narushima T, Iguchi Y, Ouchi C, ISIJ Int., 45, 937 (2006)
  23. Zhao HY, Releken YS, Xia YY, Han XW, Zhang C, Wang WJ, Sci. Adv. Mater., 12, 124 (2020)
  24. Zawisza K, Sobierajska P, Nowak N, Kedziora A, Korzekwa K, Pozniak B, Tikhomirov M, Miller J, Mrowczynska L, Wiglusz RJ, Mat. Sci. Eng., 106, 1 (2020)
  25. Bouiahya K, Oulguidoum A, Laghzizil A, Shalabi M, Nunzi JM, Colloids Surf. A: Physicochem. Eng. Asp., 595 (2020)
  26. Smiciklas I, Dimovic S, Plecas I, Mitric M, Water. Res., 40, 2267 (2006)
  27. Zhang DY, Luo HM, Zheng LW, Wang KJ, Li HX, Wang Y, Feng HX, J. Hazard. Mater., 241, 418 (2012)
  28. Zendehdel M, Shoshtari-Yeganeh B, Khanmohamadi H, Cruciani G, Process. Saf. Environ., 109, 172 (2017)
  29. Zendehdel M, Shoshtari-Yeganeh B, Cruciani G, J. Iran. Chem. Soc., 13, 1915 (2016)
  30. Iqbal N, Abdul Kadir MR, Mahmood NHB, et al., Ceram. Int., 40, 16091 (2014)
  31. Kuwahara Y, Ohmichi T, Kamegawa T, Mori K, Yamashita H, Chem. Lett., 38(6), 626 (2009)
  32. Watanabe Y, Yamada H, Ikoma T, Tanaka J, Stevens GW, Komatsu Y, J. Chem. Technol. Biot., 89, 963 (2014)
  33. Zhang ML, Zhang HY, Xu D, Han L, Niu DX, Zhang LY, Wu WS, Tian BH, Desalination, 277(1-3), 46 (2011)
  34. Wu DY, Sul Y, Chen XC, He SB, Wang X, Kong H, Fuel, 87(10-11), 2194 (2008)
  35. Young RA(Ed.), Oxford: International Union of Crystallography/Oxford University Press, 1993.
  36. Clews CJB, Maslen EN, Rietveld HM, Sabine TH, Nature, 192, 154 (1961)
  37. Rietveld HM, Ph. D. Thesis, Univ. of Western Australia, 1963.
  38. Rietveld HM, Acta Cryst., 20, 508 (1966)
  39. Rietveld HM, Acta Cryst., 22, 151 (1967)
  40. Rietveld HM, J. Appl. Cryst., 2, 65 (1969)
  41. Stork L, Muller P, Dronskowski R, Ortlepp JR, Z. Krist.-Cryst. Mater., 220, 201 (2005)
  42. Cartlidge S, Meier WM, Zeolites, 4, 218 (1984)
  43. Kuwahara Y, Ohmichi T, Kamegawa T, Mori K, Yamashita H, J. Mater. Chem., 19, 7263 (2009)
  44. Murakami T, Sugano Y, Narushima Y, Iguchi Y, Ouchi C, ISIJ Int., 51, 901 (2011)
  45. Cundy CS, Cox PA, Chem. Rev., 103(3), 663 (2003)
  46. Ryu GU, Kim GM, Khalid HR, Materials, 12, 2131 (2019)
  47. Aminian A, Solati-Hashjin M, Samadikuchaksaraei A, Bakhshi F, Gorjipour F, Farzadi A, Moztarzadeh F, Schmucker M, Ceram. Int., 37, 1219 (2011)
  48. Sofronia AM, Baies R, Anghel EM, Marinescu CA, Tanasescu S, Mat. Sci. Eng. C, 43, 153 (2014)
  49. Alshemary AZ, Akram M, Goh YF, Tariq U, Butt FK, Abdolahi A, Hussain R, Ceram. Int., 41, 11886 (2015)
  50. Alfaro S, Rodriguez C, Valenzuela MA, Bosch P, Mater. Lett., 61, 4655 (2007)
  51. Alkan M, Hopa C, Yilmaz Z, Guler H, Microporous Mesoporous Mater., 86, 176 (2005)
  52. Mohamed RM, Ismail AA, Kini G, Ibrahim IA, Koopman B, Colloids Surf. A: Physicochem. Eng. Asp., 348, 87 (2009)
  53. Driessens FCM, Boltong MG, Maeyer EAPD, Wenz R, Nies B, Planell JA, Biomaterials, 23, 4011 (2002)
  54. Kim SR, Lee JH, Kim YT, Riu DH, Jung SJ, Lee YJ, Chung SC, Kim YH, Biomaterials, 24, 1389 (2003)
  55. Kazemian H, Naghdali Z, Kashani TG, Farhadi F, Adv. Powder. Technol., 21, 279 (2010)
  56. Karadag D, Koc Y, Turan M, Armagan B, J. Hazard. Mater., 136(3), 604 (2006)
  57. Alshameri A, Yan CJ, Al-Ani Y, Dawood AS, Ibrahim A, Zhou C, Wang H, J. Taiwan. Inst. Chem. Eng., 45, 554 (2014)
  58. He Y, Lin H, Dong Y, Liu Q, Wang L, Chemosphere, 164, 387 (2016)
  59. Guo T, Yang H, Liu Q, Gu H, Wang N, Yu W, Dai Y, Water Sci. Technol., 2017, 570 (2018)
  60. Karadag D, Koc Y, Turan M, Ozturk M, J. Hazard. Mater., 144(1-2), 432 (2007)
  61. Mazloomi F, Jalali M, J. Environ. Chem. Eng., 4, 240 (2015)
  62. Abollino O, Aceto M, Malandrino M, Sarzanini C, Mentasti E, Water. Res., 37, 1619 (2003)
  63. Donat R, Akdogan A, Erdem E, Cetish H, J. Colloid Interface Sci., 286(1), 43 (2005)
  64. Motsi T, Rowson NA, Simmons MJH, Int. J. Miner. Process., 92(1-2), 42 (2009)