화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.105, 74-82, January, 2022
Enhancing adsorption efficiencies of organic molecules through covalently bonded structures of magnetic carbon nanoparticles
E-mail:
This study introduces a facile method for synthesizing covalently bonded magnetic carbon nanoparticles (MCNs) in which carboxylic acid-functionalized activated carbon nanospheres (ACN-COOH) are connected with amine-terminated iron oxide nanoparticles (NPs) (Fe3O4-NH2) via a carbodiimide crosslinking reaction. The adsorption characteristics of the developed magnetic nanoparticles (ACN-Fe3O4) were investigated using a standard cationic dye (methylene blue, MB). Two additional MCNs (multi-core and core@shell structures) were also prepared, and their adsorption performances were extensively compared. The developed ACN-Fe3O4 material thoroughly utilizes the strengths of activated carbon and Fe3O4 themselves, exhibiting large specific surface areas (708.4 m2/g) and strong magnetic properties (40.3 emu/g), resulting in high adsorption capacity (349.5 mg/g) and recycling efficiency (76 % of adsorption performance after four cycles). In addition, a study of the mechanism reveals that pore-filling processes are dominant with minor contributions from electrostatic interactions, p.p interactions, and n. p interactions. The developed covalently bonded magnetic carbon nanoparticles (ACN-Fe3O4) can thus be considered as competent adsorbents with the potential to compensate for the drawbacks of contemporary MCNs, such as, low adsorption capacity, and weak magnetic properties.
  1. Wong S, Ngadi N, Inuwa IM, Hassan O, J. Clean Prod., 175, 361 (2018)
  2. Wang SB, Peng YL, Chem. Eng. J., 156(1), 11 (2010)
  3. Cashin VB, Eldridge DS, Yu A, Zhao D, Environ. Sci. Water Res. Technol., 4, 110 (2018)
  4. Seo H, Choi I, Whiting N, et al., ChemphysChem, 19, 2143 (2018)
  5. Najafi H, Farajfaed S, Zolgharnian S, Mirak SHM, Asasian-Kolur N, Sharifian S, Process. Saf. Environ. Prot., 147, 8 (2021)
  6. Kumar P, Bansal V, Kim KH, Kwon EE, J. Ind. Eng. Chem., 62, 130 (2018)
  7. Chen D, Wang L, Ma Y, Yang W, NPG Asia Mater., 8, e301 (2016)
  8. Mohan D, Singh KR, Singh VK, J. Hazard. Mater., 152(3), 1045 (2008)
  9. Chiang CH, Chen J, Lin JH, J. Environ. Chem. Eng., 8, 103929 (2020)
  10. Hou J, Liu Y, Wen S, Li W, Liao R, Wang L, ACS Omega, 5, 13548 (2020)
  11. Kim HG, Choi YS, Lee SJ, Lee KB, Jung KW, Choi JW, J. Ind. Eng. Chem., 93, 253 (2021)
  12. Li W, Hua T, Zhou QX, Zhang SG, Li FX, Desalination, 264(1-2), 56 (2010)
  13. Larasati A, Fowler GD, Graham NJD, Environ. Sci.: Water Res. Technol., 6, 2043 (2020)
  14. Berrios M, Martı´n MA, Martı´n A, J. Ind. Eng. Chem., 18(2), 780 (2012)
  15. Krahnstover T, Wintgens T, J. Environ. Chem. Eng., 6, 5744 (2018)
  16. Zhu KR, Chen CL, Xu MWC, Chen K, Tan XL, Wakeel M, Alharbi NS, Chem. Eng. J., 331, 395 (2018)
  17. Cui Y, Qin L, Kang W, Ma J, Yang Y, Liu X, Chem. Eng. J., 382, 122995 (2020)
  18. Wang G, Gao G, Yang S, Wang Z, Jin P, Wei J, Microporous Mesoporous Mater., 310, 110623 (2021)
  19. Zhou Z, Liu R, Colloids Surf. A: Physicochem. Eng. Asp., 522, 260 (2017)
  20. Liu R, Guo Y, Odusote G, Qu F, Priestley RD, ACS Appl. Mater. Interfaces, 5, 9167 (2013)
  21. Du Y, Liu W, Qiang R, Wang Y, Han X, Ma J, Xu P, ACS Appl. Mater. Interfaces, 6, 12997 (2014)
  22. Thue PS, Umpierres CS, Lima EC, Lima DR, Machado FM, Dos Reis GS, da Silva RS, Pavan FA, Tran HN, J. Hazard. Mater., 398, 122903 (2020)
  23. Liu P, Cai W, Chen J, Yang Z, Zhou J, Cai Z, Fan J, J. Colloid Interface Sci., 599, 427 (2021)
  24. Van Tran T, Nguyen DTC, Le HTN, Duong CD, Bach LG, Nguyen HT, Nguyen TD, Chemosphere, 227, 455 (2019)
  25. Liu Y, Huo Z, Song Z, Zhang C, Ren D, Zhong H, Jin F, J. Taiwan Inst. Chem. Eng., 96, 575 (2019)
  26. Sharma VK, McDonald TJ, Kim H, Garg VK, Adv. Colloid Interface Sci., 225, 229 (2015)
  27. Sarkar AK, Bediako JK, Choi JW, Yun YS, NPG Asia Mater., 11, 4 (2019)
  28. Cui Y, Kang W, Qin L, Ma J, Liu X, Yang Y, Chem. Eng. J., 397, 125840 (2020)
  29. Zhang H, Xue G, Chen H, Li X, Chemosphere, 191, 64 (2018)
  30. Kerkez-Kuyumcu O, Bayazit SS, Salam MA, J. Ind. Eng. Chem., 36, 198 (2016)
  31. Zhang S, Zhong L, Yang H, Tang A, Zuo X, Appl. Clay. Sci., 198, 105856 (2020)
  32. Kang J, Zhang HY, Duan XG, Sun HQ, Tan XY, Liu SM, Wang SB, Chem. Eng. J., 362, 251 (2019)
  33. Lin KYA, Hsu FK, Lee WD, J. Mater. Chem. A, 3, 9480 (2015)
  34. Liu W, Sutton NB, Rijnaarts HHM, Langenhoff AAM, Crit. Rev. Environ. Sci. Technol., 46, 1584 (2016)
  35. Liang C, Li X, Su D, Ma Q, Mao J, Chen Z, Wang Y, Yao J, Li H, Mol. Catal., 453, 121 (2018)
  36. Wu C, Song M, Jin B, Wu Y, Zhong Z, Huang Y, J. Anal. Appl. Pyrolysis, 99, 137 (2013)
  37. Kim EJ, Lee CS, Chang YY, Chang YS, ACS Appl. Mater. Interfaces, 5, 9628 (2013)
  38. Li Y, Xie Y, Wang Z, et al., ACS Nano, 10, 10186 (2016)
  39. Cha J, Lee JS, Yoon SJ, Kim YK, Lee JK, RSC Adv., 3, 3631 (2013)
  40. Liu Y, Li YM, Li XM, He T, Langmuir, 29(49), 15275 (2013)
  41. Ai KL, Liu YL, Ruan CP, Lu LH, Lu GQ, Adv. Mater., 25(7), 998 (2013)
  42. Sharmeen S, Rahman A, Lubna MM, Salem KS, Islam R, Khan MA, Bioact. Mater., 3, 236 (2018)
  43. Tran HN, Wang YF, You SJ, Chao HP, Process Saf. Environ. Prot., 107, 168 (2017)
  44. Zhang X, Elsayed I, Navarathna C, Schueneman GT, Hassan EB, ACS Appl. Mater. Interfaces, 11, 46714 (2019)
  45. Wu W, Jiang CZ, Roy VA, Nanoscale, 8, 19421 (2016)
  46. Leslie-Pelecky DL, Rieke RD, Chem. Mater., 8, 1770 (1996)
  47. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol F, Sing KSW, Pure. Appl. Chem., 87, 1051 (2015)
  48. Liu MJ, Zhang TR, Ren HX, Wang L, Meng TJ, Zhao JC, Wang H, Zhang YF, Mater. Res. Bull., 104, 15 (2018)
  49. Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP, Water Res., 120, 88 (2017)
  50. Lima EC, Sher F, Guleria A, Saeb MR, Anastopoulos I, Tran HN, Hosseini-Bandegharaei A, J. Environ. Chem. Eng., 9, 104813 (2021)
  51. ThuePS, Sophia AC, Lima EC, et al., J. Clean Prod., 171, 30 (2018)
  52. Pham TD, Kobayashi M, Adachi Y, Colloid Polym. Sci., 293, 217 (2014)
  53. Nguyen DT, Tran HN, Juang RS, et al., J. Environ. Chem. Eng., 8, 104408 (2020)
  54. Kundu S, Chowdhury IH, Naskar MK, ACS Omega, 3, 9888 (2018)
  55. Ovchinnikov OV, Evtukhova AV, Kondratenko TS, Smirnov MS, Khokhlov VY, Erina OV, Vib. Spectrosc., 86, 181 (2016)