Journal of Industrial and Engineering Chemistry, Vol.105, 405-413, January, 2022
Enhancement of the electro-Fenton degradation of organic contaminant by accelerating Fe3+/Fe2+ cycle using hydroxylamine
E-mail:,
The Electro-Fenton process can generate reactive oxygen species capable of oxidizing refractory organic contaminants. However, low regeneration efficiency of Fe2+ restricts its application. Herein, hydroxylamine (HA) was added into the Electro-Fenton (HA/Electro-Fenton) process to accelerate the transformation of Fe3+ to Fe2+. Using dimethyl phthalate (DMP) as target contaminant, the HA/Electro-Fenton system alleviated the two-stage reaction process and accelerated the removal of DMP in the pH range of 2.0-6.0. With improving DMP concentration from 5 mg L-1 to 50 mg L-1, their degradation rate increased in the HA/Electro-Fenton system, while decreased in the Electro-Fenton system. The addition of HA had negligible effect on electro-generation of H2O2, but facilitate the redox cycle of Fe3+/Fe2+ and the generation of hydroxyl radicals, thus improving the degradation of DMP. The final transformation products of HA were N2, N2O, and NO3 -. The presence of PO 4 3- improved DMP degradation, while Cl- and organic matters inhibited DMP removal in varying degrees. This study provided useful reference to solve the low efficiency of Fe3+/Fe2+ cycle and expand the pH application range in the Electro-Fenton process.
- Gao DW, Wen ZD, Sci. Total Environ., 541, 986 (2016)
- Luo Q, Liu ZH, Yin H, Dang Z, Wu PX, Zhu NW, Lin Z, Liu Y, Water Res., 147, 362 (2018)
- Dolatabadi M, Swiergosz T, Ahmadzadeh S, Sci. Total Environ., 772 (2021)
- Yuan BL, Li XZ, Graham N, Water Res., 42, 1413 (2008)
- Dolatabadi M, Mehrabpour M, Esfandyari M, Ahmadzadeh S, MethodsX, 7 (2020)
- Yang J, Dong Z, Jiang C, Wang C, Liu H, Chemosphere, 237 (2019)
- Jung HJ, Hong JS, Suh JK, J. Ind. Eng. Chem., 19(4), 1325 (2013)
- Dolatabadi M, Ahmadzadeh S, Ghaneian MT, Environ. Prog. Sustainable Energy, 39 (2020)
- Dolatabadi M, Ghaneian MT, Wang C, Ahmadzadeh S, J. Mol. Liq., 334 (2021)
- Dolatabadi M, Ahmadzadeh S, Water Sci. Technol., 80, 685 (2019)
- Abdollahi Y, Abdullah AH, Gaya UI, Ahmadzadeh S, Zakaria A, Shameli K, Zainal Z, Jahangirian H, Yusof NA, J. Braz. Chem. Soc., 23, 236 (2012)
- Oturan MA, Aaron JJ, Cri. Rev. Environ. Sci. Technol., 44, 2577 (2014)
- Wang J, Wang S, Chem. Eng. J., 401 (2020)
- Bhat AP, Gogate PR, J. Hazard. Mater., 403 (2021)
- Gligorovski S, Strekowski R, Barbati S, Vione D, Chem. Rev., 115(24), 13051 (2015)
- Ganiyu SO, Zhou MH, Martinez-Huitle CA, Appl. Catal. B: Environ., 235, 103 (2018)
- Li Y, Liu L, Zhang Q, Su Y, Zhou M, Electrochim. Acta, 382 (2021)
- Liu K, Yu JCC, Dong H, Wu JCS, Hoffmann MR, Environ. Sci. Technol., 52, 12667 (2018)
- Li D, Zheng T, Liu Y, Hou D, Yao KK, Zhang W, Song H, He H, Shi W, Wang L, Ma J, J. Hazard. Mater., 396 (2020)
- Brillas E, Sires I, Oturan MA, Chem. Rev., 109(12), 6570 (2009)
- Wang YJ, Li XY, Zhen LM, Zhang HQ, Zhang Y, Wang CW, J. Hazard. Mater., 229, 115 (2012)
- Li D, Zheng T, Liu Y, Hou D, He H, Song H, Zhang J, Tian S, Zhang W, Wang L, Ma J, Chem. Eng. J., 394 (2020)
- Chen L, Ma J, Li X, Zhang J, Fang J, Guan Y, Xie P, Environ. Sci. Technol., 45, 3925 (2011)
- Zou J, Ma J, Chen L, Li X, Guan Y, Xie P, Pan C, Environ. Sci. Technol., 47, 11685 (2013)
- Yu F, Zhou M, Zhou L, Peng R, Environ. Sci. Technol. Lett., 1, 320 (2014)
- Scharf K, Phys. Med. Biol., 16, 77 (1971)
- Li ZY, Wang L, Liu YL, Zhao Q, Ma J, Water Res., 168 (2020)
- Scheiner D, Water Res., 10, 31 (1976)
- Butler JH, Elkins JW, Mar. Chem., 34, 47 (1991)
- Chen L, Li X, Zhang J, Fang J, Huang Y, Wang P, Ma J, Environ. Sci. Technol., 49, 10373 (2015)
- Pignatello JJ, Oliveros E, MacKay A, Crit. Rev. Environ. Sci. Technol., 36, 1 (2006)
- Robinson RA, Bower VE, J. Phys. Chem., 65, 1279 (1961)
- Simic M, Hayon E, J. Am. Chem. Soc., 93, 5982 (1971)
- Solisa RR, Mena IF, Nadagouda MN, Dionysiou DD, J. Hazard. Mater., 384 (2020)
- Choudhary VR, Jana P, Catal. Commun., 8, 1578 (2007)
- Tomat R, Rigo A, Salmaso R, J. Electroanal. Chem. Interfacial Electrochem., 59, 255 (1975)
- Sires I, Garrido JA, Rodriguez RM, Brillas E, Oturan N, Oturan MA, Appl. Catal. B: Environ., 72(3-4), 382 (2007)
- An J, Li N, Wu Y, Wang S, Liao C, Zhao Q, Zhou L, Li T, Wang X, Feng Y, Environ. Sci. Technol., 54, 10916 (2020)
- Li ZY, Liu YL, He PN, Zhang X, Wang L, Gu HT, Zhang HC, Chem. Eng. J., 418 (2021)
- Jia J, Liu D, Tian J, Wang W, Ni J, Wang X, Chem. Eng. J., 400 (2020)
- Liu J, Dong C, Deng Y, Ji J, Bao S, Chen C, Shen B, Zhang J, Xing M, Water Res., 145, 312 (2018)
- Souza FL, Aquino JM, Irikura K, Miwa DW, Rodrigo MA, Motheo AJ, Chemosphere, 109, 187 (2014)
- Wei L, Zhang Y, Chen S, Zhu L, Liu X, Kong L, Wang L, J. Environ. Sci., 76, 188 (2019)
- Neta P, Huie RE, Ross AB, J. Phys. Chem. Ref. Data, 17(3), 1027 (1988)
- Buxton GV, Greenstock CL, Helman WP, Ross AB, J. Phys. Chem. Ref. Data, 17(2), 513 (1988)
- Zou J, Enhanced Effectiveness and Mechanism of Fe2+/Persulfate System with Hydroxylamine, Harbin Institute of Technology, 2016, Ph.D. Thesis.
- Hu Y, Li Y, He J, Liu T, Zhang K, Huang X, Kong L, Liu J, J. Environ. Manage., 226, 256 (2018)