화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.6, 904-909, November, 2021
전기유체역학적 기법을 이용한 정렬된 섬유구조체를 갖는 세포 함유 스캐폴드 제조
Fabrication of Tubular Scaffolds with Aligned Fibrous Structures Containing Cells within Pockets Using Electrohydrodynamic Methods
E-mail:
초록
전기방사 및 전기분무의 두 가지 전기유체역학적 기법을 이용하여 포켓 내에 세포가 함입되어 있고 정렬된 섬유구조체를 갖는 관형 스캐폴드를 제조하였다. 스캐폴드 제조를 위해 분산액을 회전 드럼에 전기 분무하는 동시에 섬유구조를 형성하기 위해 고분자 용액을 동시에 전기방사하였으며, 전도성 와이어를 통해 정렬된 구조의 스캐폴드가 형성되고, 전기분무를 통해 섬유구조체 내부에 존재하는 포켓에 세포를 함입시켰다. 제조된 스캐폴드의 두께 및 세포 농도는 분무와 방사시간을 통해 조절되었으며 해당 스캐폴드 제조기술은 신경, 뼈 및 혈관의 조직재생에 활용할 수 있다.
Fibrous tubular scaffolds with cells in pockets were fabricated by a combination of electrospinning and electrospraying methods. Cell dispersions were electrosprayed onto a rotating drum while a polymer solution was electrospun at the same time for the production of the fibrous structure. The electrospun fibers were aligned onto the rotating drum using conductive wires, creating pockets with cells present within the scaffold. The thickness of the scaffold and the number of the cells were controlled by varying the processing time. These scaffolds could be potnetially utilized for the tissue engineering of nerve, bone, and blood vessels.
  1. Agarwal S, Wendorff JH, Greiner A, Adv. Mater., 21(32-33), 3343 (2009)
  2. Teo WE, Inai R, Ramakrishna S, Sci. Technol. Adv. Mater, 12, 013002 (2011)
  3. Ahn GY, Ryu TK, Choi YR, Lee MJ, Choi SW, Biomater. Res., 22, 16 (2018)
  4. Nisbet DR, Forsythe JS, J. Biomater. Appl., 24, 7 (2009)
  5. Yang F, Murugan R, Wang C, Ramakrishna S, Biomaterials, 26, 2603 (2005)
  6. Li W, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RSA, Biomaterials, 26, 599 (2005)
  7. Xu CY, Inai R, Kotaki M, Ramakrishna S, Biomaterials, 25, 877 (2004)
  8. Sosnik A, J. Biomed. Nanotechnol., 10, 2200 (2014)
  9. Wang J, Jansen JA, Yang F, Front. Chem., 7, 258 (2019)
  10. Yunmin M, Yuanyan L, Haiping C, Qingxi H, Open Biomed. Eng. J., 9, 133 (2015)
  11. Bock N, Woodruff MA, Steck R, Hutmacher DW, Farrugia BL, Dargaville TR, Macromol. Biosci., 14, 202 (2014)
  12. Malakhov SN, Khomenko AY, Belousov SI, Prazdnichnyi AM, Chvalun SN, Shepelev AD, Budyka AK, Fibre Chem., 41, 355 (2009)
  13. Shi X, Zhou W, Ma D, Ma Q, Bridges D, Ma Y, Hu A, J. Nanomater., 140716 2015.
  14. Lee YH, Lee JH, An IG, Kim C, Lee DS, Lee YK, Nam JD, Biomaterials, 26, 3165 (2005)
  15. Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, Mauck RL, Biomaterials, 29, 2348 (2008)
  16. Jeong KY, Paik DH, Choi SW, Macromol. Mater. Eng., 299, 1425 (2014)
  17. Vaz CM, Tuijl SV, Bouten CVC, Baaijens FPT, Acta Biomater, 1, 575 (2005)
  18. Bhattacharjee M, Miot S, Gorecka A, et al., Acta Biomater., 8, 3313 (2012)
  19. Huang C, Tang Y, Liu X, Sutti A, Ke Q, Mo X, Wang X, Morsic Y, Lin T, Soft Matter, 7, 10812 (2011)
  20. Madduri S, Papaloizos M, Gander B, Biomaterials, 31, 2323 (2010)
  21. Wang HB, Mullins ME, Cregg JM, McCarthy CW, Gilbert RJ, Acta Biomater., 6, 2970 (2010)
  22. Wang K, Zhu M, Li T, Zheng W, Li L, Xu M, Zhao Q, Kong D, Wang L, J. Biomed. Nanotechnol., 10, 1588 (2014)
  23. Stankus JJ, Guan J, Fujimoto K, Wagner WR, Biomaterials, 27, 735 (2006)
  24. Baker BM, Mauck RL, Biomaterials, 28, 1967 (2007)