화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.12, 2500-2509, December, 2021
Acceleration of microalgal biofilm formation on PET by surface engineering
E-mail:
Biofilm-based microalgal cultivation has recently received great attention owing to its low harvesting cost, but the main problem in practicing it is the low rate of attachment on solid carriers. The aim of this research is to introduce novel physical and wet chemical surface engineering methods to provide more favorable polymeric surfaces for microalgal adhesion. PET threads were used as a substrate in the treatments. The surface of the threads was treated with chromic acid, sodium hydroxide and sandpaper. The chemical composition, surface morphology, topography and contact angle of the threads were characterized. The threads were placed in a biofilm-based cylindrical photobioreactor as a bed for attachment. Two freshwater single-cell microalgae, Scenedesmus dimorphus and Chlorella vulgaris, were cultivated in the photobioreactor to assess the attachment rate of the threads. The analysis of SEM and AFM images confirmed the creation of new grooves. The AFM image analysis showed 323%, 184% and 11.5% increase in the surface roughness, while there were 73%, 51%, and 30% rates of reduction in the contact angles for the treatments with acid, sandpaper and base, respectively. Creation of new grooves, increase of the surface roughness and decrease of the contact angle led to an increase in the microalgae attachment rate. The best results were achieved with acid treatment. It led to a remarkable increase in the attachment rate of S. dimorphus. However, the attachment of C. vulgaris cells was not efficient. This research is the first to apply a surface engineering method to increase the microalgal attachment rate in biofilm-based systems. The insight that is provided can be of benefit for further studies in this field.
  1. Irving TE, Allen DG, Appl. Microbiol. Biotechnol., 92(2), 283 (2011)
  2. Gudin C, Thepenier C, Advances In Biotechnological Processes, 6, 73 (1986).
  3. Cao J, Yuan W, Pei Z, Davis T, Cui Y, Beltran M, J. Manuf. Sci. Eng., 131, 064505 (2009)
  4. Boelee N, Temmink H, Janssen M, Buisman C, Wijffels R, Water Res., 45, 5925 (2011)
  5. Cui Y, Yuan W, Cao J, Int. J. Agric. Biol. Eng., 6, 44 (2013)
  6. OzkanA A, Kinney K, Katz L, Berberoglu H, Bioresour. Technol., 114, 542 (2012)
  7. Wei Q, Hu Z, Li G, Xiao B, Sun H, Tao M, Front. Environ. Sci. Eng. China, 2, 446 (2008)
  8. Shen Y, Xu X, Zhao Y, Lin X, Bioprocess Biosyst. Eng., 37, 441 (2014)
  9. Schumacher JF, Carman ML, Estes TG, Feinberg AW, Wilson LH, Callow ME, Callow JA, Finlay JA, Brennan AB, Biofouling, 2, 55 (2007)
  10. Babu M, Effect of algal biofilm and operational conditions on nitrogen removal in waste stabilization ponds, CRC Press, The Netherlands (2011).
  11. Oliveira R, Azeredo J, Teixeira P, Biofilms in wastewater treatment: An interdisciplinary approach, International Water Association, London (2003).
  12. Johnson MB, Wen ZY, Appl. Microbiol. Biotechnol., 85(3), 525 (2010)
  13. Bhaiji T, Enhancing microalgae attachment for biofilm-based photobioreactors, Cranfield University, Cranfield (2016).
  14. Gross M, Zhao X, Mascarenhas V, Wen Z, Biotechnol. Biofuels, 9, 38 (2016)
  15. Bag DS, Kumar VP, Maiti S, J. Appl. Polym. Sci., 71(7), 1041 (1999)
  16. Goddard JM, Hotchkiss J, Prog. Polym. Sci., 32, 698 (2007)
  17. Holmberg K, Hyden H, Preparative Biochem., 15, 309 (1985)
  18. Penn L, Wang H, Polym. Adv. Technol., 5, 809 (1994)
  19. Sheng E, Sutherland I, Brewis D, Heath R, J. Adhes Sci. Technol., 9, 47 (1995)
  20. Tho S, Ibrahim K, J. Teknol., 59, 5 (2012)
  21. ASTM, Standard practice for preparation of surfaces of plastics prior to adhesive bonding, ASTM International, Pennsylvania (2017).
  22. Danaee S, Yazdanbakhsh N, Naghoosi H, Sheykhinejad A, Korean J. Chem. Eng., 35(5), 1144 (2018)
  23. Kotai J, Instructions for preparation of modified nutrient solution z8, Norwegian Institute for Water Research, Oslo (1972).
  24. Huang Q, Jiang F, Wang L, Yang C, Engineering, 3, 318 (2017)
  25. Katarzyna L, Sai G, Singh OA, Renew. Sust. Energ. Rev., 42, 1418 (2015)
  26. Chatterjee S, Biswas N, Datta A, Dey R, Maiti P, Microscopy, 63, 269 (2014)
  27. Pathan A, Bond J, Gaskin R, Mater. Today, 12, 32 (2010)
  28. Norton T, Thompson R, Pope J, Veltkamp C, Banks B, Howard C, Hawkins S, Aquat. Microb. Ecol., 16, 199 (1998)
  29. Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S, J. Bacteriol., 182, 6482 (2000)
  30. Cordeiro N, Ornelas M, Ashori A, Sheshmani S, Norouzi H, Carbohydr. Polym., 87, 2367 (2012)
  31. Donlan RM, Emerging Infect. Dis., 8, 881 (2002)
  32. Drobota M, et al., University Politehnica of Bucharest Scientific Bulletin Series B-Chemistry and Materials Science, 77, 131 (2015).
  33. Slepicka P, Kasalkova NS, Stranska E, Bacakova L, Svorcik V, Express. Polym. Lett., 7, 535 (2013)
  34. Zhang H, Tang Y, Cai DQ, Liu XA, Wang XQ, Huang Q, Yu ZL, J. Hazard. Mater., 181(1-3), 801 (2010)
  35. Wang H, Chen S, Zhang J, Colloid Polym. Sci., 287, 541 (2009)
  36. Fang Z, Yang J, Liu Y, Shao T, Zhang C, IEEE Trans. Plasma Sci., 41, 1627 (2013)
  37. Donelli I, Freddi G, Nierstrasz VA, Taddei P, Polym. Degrad. Stabil., 95, 1542 (2010)
  38. Liu Y, He T, Gao C, Colloids Surf. B: Biointerfaces, 46, 117 (2005)
  39. Hao W, Yanpeng L, Zhou S, Xiangying R, Wenjun Z, Jun L, Int. J. Agric. Biol. Eng., 10, 125 (2017)
  40. Bhushan B, Modern tribology handbook, two volume set, CRC press, Florida, 74 (2000).
  41. Raposo M, Ferreira Q, Ribeiro P, Modern Research and Educational Topics in Microscopy, 1, 758 (2007).
  42. Taufik M, Jain PK, J. Manuf. Process., 30, 161 (2017)
  43. Cui Y, Yuan WQ, Appl. Energy, 112, 485 (2013)
  44. Webb HK, Crawford RJ, Sawabe T, Ivanova EP, Microbes Environ., 24, 39 (2009)
  45. Blais P, Carlsson D, Csullog G, Wiles D, J. Colloid Interface Sci., 47, 636 (1974)
  46. Ista LK, Callow ME, Finlay JA, Coleman SE, Nolasco AC, Simons RH, Callow JA, Lopez GP, Appl. Environ. Microbiol., 70, 4151 (2004)
  47. Callow ME, Fletcher RL, Int. Biodeterior. Biodegradation, 34, 333 (1994)
  48. Fletcher RL, Callow ME, British Phycological J., 27, 303 (1992)
  49. Sekar R, et al., Asian pacific phycology in the 21st century: Prospects and challenges, Springer, Hong Kong, 109 (2004).
  50. Ozkan A, Berberoglu H, ASME 2011 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 169 (2011).
  51. Manheim D, Nelson Y, Environ. Prog. Sustain. Energy, 32, 946 (2013)
  52. Bhattacharya P, Lin S, Turner JP, Ke PC, J. Phys. Chem. C, 114, 16556 (2010)
  53. Trainor FR, Burg CA, J. Phycol., 1, 15 (1965)
  54. Eckardt NA, The Plant Cell, 22, 2924 (2010)
  55. Renner LD, Weibel DB, MRS Bull., 36, 347 (2011)
  56. Ozkan A, Berberoglu H, Colloids Surf. B: Biointerfaces, 112, 287 (2013)
  57. Moreno L, Prieto EM, Casanova H, Ciencia en Desarrollo, 6, 17 (2015).
  58. Wang JH, Zhuang LL, Xu XQ, Deantes-Espinosa VM, Wang XX, Hu HY, Renew. Sust. Energ. Rev., 92, 331 (2018)
  59. Lizzul AM, Hellier P, Purton S, Baganz F, Ladommatos N, Campos L, Bioresour. Technol., 151, 12 (2014)
  60. Wiel JBV, Mikulicz JD, Boysen MR, et al., RSC Adv., 7, 4402 (2017)
  61. Akaul F, Kizilkaya IT, Akgul R, Erdugan H, Turk J. Fish Aquat. Sci., 17, 609 (2017)
  62. Lurling M,The smell of water: grazer-induced colony formation in Scenedesmus, Netherlands (1999).
  63. Mayeli S, Nandini S, Sarma S, Aquatic Ecology, 38, 515 (2005)
  64. Edwards KJ, Rutenberg AD, Chem. Geol., 180, 19 (2001)
  65. Chen X, Liu T, Wang Q, Microb. Cell Fact., 13, 142 (2014)
  66. Sirmerova M, Prochazkova G, Siristova L, Kolska Z, Branyik T, J. Appl. Phycol., 25, 1687 (2013)