Korean Journal of Chemical Engineering, Vol.38, No.12, 2560-2566, December, 2021
Preparation of polyethylene terephthalate foams at different saturation temperatures using dual methods of supercritical batch foaming
E-mail:,
Polyethylene terephthalate (PET) foams were prepared at different saturation temperatures using two supercritical foaming methods. The average cell size, cell number density, and porosity of PET foams obtained using each foaming method were compared. The crystallinity of the PET samples after the saturation step in the two-step foaming process was measured to observe the CO2-induced crystallization. The crystallinity of PET according to the saturation temperature led to a variation in cell size in the two-step foaming. In contrast, the melting of crystals with the increase in the temperature affected the cell number density of the polymeric foam prepared by one-step foaming method. The influence of the PET crystals on the cell nucleation or cell growth in each foaming method was studied from these results.
Keywords:Polyethylene Terephthalate;Carbon Dioxide;Supercritical Foaming Process;CO2-induced Crystallization;Heterogeneous Nucleation
- Sorrentino L, Di Maio E, Iannace S, J. Appl. Polym. Sci., 116(1), 27 (2010)
- Guan R, Wang BQ, Lu DP, Fang Q, Xiang BL, J. Appl. Polym. Sci., 93(4), 1698 (2004)
- Lai CC, Yu CT, Wang FM, Hsiao HT, Liang WC, Ho YH, Teng WF, Liu LC, Chen CM, Polym. Test, 74, 1 (2019)
- Bedell M, Brown M, Kiziltas A, Mielewski D, Mukerjee S, Tabor R, Waste Manag., 71, 97 (2018)
- Xanthos M, Yilmazer U, Dey SK, Quintans J, Polym. Eng. Sci., 40(3), 554 (2000)
- Guo H, Nadella K, Kumar V, J. Mater. Res., 28, 2374 (2013)
- Kwon DE, Park BK, Lee YW, Polymers, 11, 291 (2019)
- Ni J, Yu K, Zhou H, Mi J, Chen S, Wang X, J. Supercrit. Fluids, 158, 104719 (2020)
- Yao S, Hu D, Xi Z, Liu T, Xu Z, Zhao L, Polym. Test, 90, 106649 (2020)
- Kumar V, Juntunen RP, Barlow C, Cell. Polym., 19, 25 (2000)
- Chiou JS, Barlow JW, Paul DR, J. Appl. Polym. Sci., 30, 3911 (1985)
- Liang MT, Wang CM, Ind. Eng. Chem. Res., 39(12), 4622 (2000)
- Li DC, Liu T, Zhao L, Yuan WK, AIChE J., 58(8), 2512 (2012)
- Xia T, Xi ZH, Liu T, Zhao L, Chem. Eng. Sci., 168, 124 (2017)
- Lemmon EW, McLinden MO, Friend DG, National Institute of Standards and Technology, Gaithersburg (2021).
- Mehta A, Gaur U, Wunderlich B, J. Polym. Sci. Polym. Phys. Ed., 16, 289 (1978)
- Jomekian A, Bazooyar B, Poormohammadian SJ, Darvishi P, Korean J. Chem. Eng., 36(12), 2047 (2019)
- Yang YC, Li XY, Zhang QQ, Xia CH, Chen CKY, Chen XH, Yu P, J. Supercrit. Fluids, 145, 122 (2019)
- Baldwin DF, Park CB, Suh NP, Polym. Eng. Sci., 36(11), 1437 (1996)
- Kumar A, Patham B, Mohanty S, Nayak SK, J. Polym. Res., 26, 80 (2019)
- Di Maio E, Kiran E, J. Supercrit. Fluids, 134, 157 (2018)
- Guo HM, Kumar V, Polymer, 57, 157 (2015)
- Yoon TJ, Kong W, Kwon DE, Park BK, Il Lee W, Lee YW, J. Supercrit. Fluids, 124, 30 (2017)
- Li R, Lee JH, Wang C, Mark LH, Park CB, J. Supercrit. Fluids, 154, 104623 (2019)
- Kwon YK, Bae HK, Korean J. Chem. Eng., 24(1), 127 (2007)
- Kumar V, Weller JE, Int. Polym. Process., 8, 73 (2013)
- Hong IK, Lee S, Korean J. Chem. Eng., 31(1), 166 (2014)
- Hou JJ, Zhao GQ, Wang GL, Zhang L, Dong GW, Li B, J. Supercrit. Fluids, 145, 140 (2019)
- Chang YW, Kim S, Kang SC, Bae SY, Korean J. Chem. Eng., 28(8), 1779 (2011)
- Jiang C, Han S, Chen S, Zhou H, Wang X, Cell. Polym., 39, 223 (2020)
- Nofar M, Kucuk EB, Bati B, J. Supercrit. Fluids, 153 (2019)
- Hindeleh AM, Johnson DJ, Polymer, 19, 37 (1978)
- Srithep Y, Turng LS, J. Polym. Eng., 34, 5 (2014)