화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.6, 621-626, December, 2021
순차적 실험계획법을 이용한 MOF-801 합성공정 최적화
Optimization of MOF-801 Synthesis Using Sequential Design of Experiments
E-mail:
초록
MOF-801 합성공정의 최적화를 위해 순차적인 실험 계획법을 이용하였다. 먼저 screening을 위한 완전 2-요인 설계와 이후 반응표면 분석법 중에 하나인 중심합성 계획법을 연속적으로 사용하였다. 두 가지 반응변수인 MOF-801의 결정화도와 BET 비표면적 중에 실험계획법에 보다 적합한 변수를 선택하기 위하여 fumaric acid, dimethylformamide (DMF)및 formic acid의 몰비를 이용한 23 요인 설계법을 수행하였다. MINITAB 19 소프트웨어에 따라 설계된 8번의 MOF-801합성 실험을 수행한 이후 XRD 분석 및 질소흡착법을 이용하여 특성분석을 수행하였다. 두 가지 반응변수 중 결정화도의 R2이 0.999로 BET 비표면적보다 실험계획법에 보다 적합하였다. 분산 분석(ANOVA)을 통해 fumaric acid와 formic acid의 몰 비가 MOF-801의 결정화도를 결정하는 주요 인자임을 확인하였다. response optimization과 두 인자의 contour plot을 통해 최적의 몰비는 ZrOCl2·8H2O : fumaric acid : DMF : formic acid = 1 : 1: 39 : 35로 추정되었다. 이후 합성반응 공정의 최적화를 위해 도출된 전구체의 몰 비 조건에서 합성 기간과 온도에 대한 박스-벤켄설계법을 수행하였다. 설계된 9번의 합성실험을 통해 도출된 결과를 2차 모델 방정식을 이용하여 계산하였다. 이를 이용하여 MOF-801의 최대 결정화도는 합성시간 7.8 h 그리고 합성온도 123 °C의 조건에서 얻을 수 있음을 예측하였다.
A sequential design of experiments was used to optimize MOF-801 synthesis process. For the initial screening, a general 2k factorial design was selected followed by the central composition design, one of the response surface methods. A 23 factorial design based on the molar ratio of fumaric acid, dimethylformamide (DMF), and formic acid was performed to select the more suitable response variable for the design of experimental method among the crystallinity and BET specific surface area of MOF-801. After performing 8 synthesis experiments designed by MINITAB 19 software, the characteristic analysis was performed using XRD analysis and nitrogen adsorption method. The crystallinity with R2 = 0.999 was found to be more suitable for the experimental method than that of BET specific surface area. Based on analysis of variance (ANOVA), it was confirmed that the molar ratio of fumaric acid and formic acid was a major factor in determining the crystallinity of MOF-801. Through the response optimization and contour plot of two factors, the optimal molar ratio of ZrOCl2·8H2O : fumaric acid : DMF : formic acid was 1 : 1 : 39 : 35. In order to optimize the synthesis process, the central composition design on synthesis time and temperature was performed under the identical molar ratio of precursors. The results derived through the designed 9 synthesis experiments were calculated using the quadratic model equation. Thus, the maximum crystallinity of MOF-801 predicted under the synthesis time and temperature of 7.8 h and 123 °C, respectively.
  1. Butova VV, Soldatov MA, Guda AA, Lomachenko KA, Lamberti C, Russ. Chem. Rev., 85, 280 (2016)
  2. Tranchemontagne DJ, Mendoza-Cortes JL, O'Keeffe M, Yaghi OM, Chem. Soc. Rev., 38, 1257 (2009)
  3. Butova VV, Polyakov VA, Bulanova EA, et al., Microporous Mesoporous Mater., 293, 109685 (2020)
  4. Bugaev AL, Guda AA, Lomachenko KA, et al., Faraday Discuss., 208, 287 (2018)
  5. Smolders S, Lomachenko KA, Bueken B, et al., ChemphysChem, 19, 373 (2018)
  6. Butova VV, Polyakov VA, Budnyk AP, et al., Polyhedron, 154, 457 (2018)
  7. Butova VV, Polyakov VA, Erofeeva EA, et al., Inorg. Chim. Acta., 509, 119678 (2020)
  8. He HZ, Du LH, Guo HL, An YC, Lu LJ, chen YL, Wang Y, Zhong HH, Shen J, Wu J, Shuai XT, Small, 16, 200125 (2020)
  9. Noorian SA, Hemmatinejad N, Navarro JAR, Microporous Mesoporous Mater., 302, 8 (2020)
  10. Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P, Chem. Eur. J., 17, 6643 (2011)
  11. Bai Y, Dou Y, Xie LH, Rutledge W, Li JR, Zhou HC, Chem. Soc. Rev., 45, 2327 (2016)
  12. Wißmann G, Schaate A, Lilienthal S, Bremer I, Schneider AM, Behrens P, Microporous Mesoporous Mater., 152, 64 (2012)
  13. Zahn G, Schulze HA, Lippke J, Konig S, Sazama U, Froba M, Behrens P, Microporous Mesoporous Mater., 203, 186 (2015)
  14. Furukawa H, Gandara F, Zhang YB, Jiang JC, Queen WL, Hudson MR, Yaghi OM, J. Am. Chem. Soc., 136(11), 4369 (2014)
  15. Xia LZ, Wang FL, Inorg. Chim. Acta., 444, 186 (2016)
  16. Vetlitsyna-Novikova KS, Butova VV, Pankin IV, Shapovalov VV, Soldatov AV, J. Surf. Ingestig., 13, 787 (2019)
  17. Furukawa H, Gandara F, Zhang YB, Jiang JC, Queen WL, Hudson MR, Yaghi OM, J. Am. Chem. Soc., 136(11), 4369 (2014)
  18. Kim H, Cho HJ, Narayanan S, et al., Sci. Rep., 6, 19097 (2016)
  19. Kim H, Yang S, Rao SR, Narayanan S, Kapustin EA, Furukawa H, Umans AS, Yaghi OM, Wang EN, Science, 356(6336), 430 (2017)
  20. Kimi H, Rao SR, Kapustin EA, Zhao L, Yang S, Yaghi OM, Wang EN, Nat. Commun., 9, 1191 (2018)
  21. Choi J, Lin LC, Grossman JC, J. Phys. Chem. C, 122, 5545 (2018)
  22. Solovyeva MV, Gordeeva LG, Krieger TA, Aristov YI, Energy Conv. Manag., 174, 356 (2018)
  23. Ke F, Peng CY, Zhang T, Zhang MR, Zhou CY, Cai HM, Zhu JF, Wan XC, Sci. Rep., 8, 939 (2018)
  24. Zhu XH, Yang CX, Yan XP, Microporous Mesoporous Mater., 259, 163 (2018)
  25. Tan TL, Krusnamurthy PAP, Nakajima H, Rashid SA, RSC Adv., 10, 18740 (2020)
  26. Prabhu SM, Kancharla S, Park CM, Sasaki K, CrystEngComm, 21, 2320 (2019)
  27. Yoo J, Ryu U, Kwon W, Choi KM, Sens. Actuators B-Chem., 283, 426 (2019)
  28. Zheng MQ, Zhao XD, Wang KK, She YB, Gao ZQ, Ind. Eng. Chem. Res., 58(51), 23330 (2019)