화학공학소재연구정보센터
Clean Technology, Vol.27, No.4, 315-324, December, 2021
바이오가스 열병합 발전에서 발생하는 NOx 제거를 위한 텅스텐 함량에 따른 NH3-SCR 바나듐계 촉매 연구
A Study on NH3-SCR Vanadium-Based Catalysts according to Tungsten Content for Removing NOx Generated from Biogas Cogeneration
E-mail:
초록
본 연구에서는 바이오가스를 이용하는 열병합 발전에서 배출되는 질소산화물을 환원제인 암모니아와 촉매를 이용하여 제거하는 선택적촉매환원법(selective catalytic reduction, SCR)에 있어서 다양한 배가스 특성에 대한 바나듐 촉매 연구를 수행하였다. 연구에 사용한 촉매는 상용촉매인 V/W/TiO2를 사용하였으며 다양한 운전조건에서 텅스텐 함량에 따라 영향을 확인하였다. NH3-SCR 실험 결과 380 ~ 450 ℃에서 95% 이상의 탈질 성능을 확인하였으며 SO2 내구성 실험 및 TGA 분석을 통해 미량의 SO2에 대한 촉매의 내구성을 확인하였다. 또한 H2-TPR 분석결과 텅스텐 함량이 높을수록 우수한 산화.환원(redox) 특성을 확인할 수 있었다. 이에 따라 열병합 발전에서 배출되는 미량의 일산화탄소에 대한 산화실험을 수행하였으며 역시 우수한 일산화탄소의 산화력을 확인할 수 있었다. NH3-DRIFTs 분석에서는 텅스텐 함량이 높을수록 Bronsted/Lewis acid sites 모두 증가하였으며 텅스텐을 촉매에 첨가 시 우수한 열적 내구성을 갖는 것으로 확인되었다. 따라서 다양한 운전조건에 따른 실험 결과, 텅스텐 함량이 높은 촉매가 바이오가스를 이용하는 열병합 발전에 적용하기 바람직하다고 판단된다.
In this study, a vanadium catalyst study was conducted on the various characteristics of the exhaust gas in the Selective-Catalytic-Reduction (SCR) method in which nitrogen oxides emitted from cogeneration using biogas are removed by using ammonia as a reducing agent and a catalyst. V/W/TiO2, a commercial catalyst, was used as the catalyst in this study, and the effect was confirmed according to the tungsten content under various operating conditions. As a result of the NH3-SCR experiment, the denitrification performance was confirmed at 380 ~ 450 ℃ more than 95%, and durability to trace amounts of SO2 was confirmed through the SO2 durability experiment and TGA analysis. As a result of H2-TPR analysis, the higher the tungsten content, the better the redox properties. Accordingly, enhanced oxidizing properties were confirmed in the oxidation test for a trace amount of carbon monoxide emitted from the cogeneration. In NH3-DRIFTs analysis, it was confirmed that the higher the tungsten content, the higher both the Bronsted/Lewis acid sites and the better the thermal durability when tungsten is added to the catalyst. Based on the experiments under various operating conditions, it is considered that a catalyst with a high tungsten content is suitable to be applied to cogeneration using biogas.
  1. Kang DW, Kang SY, Kim TS, Hur KB, Korean Soc. Fluid Mach., 13(6), 57 (2010)
  2. Kang DW, Shin HD, Kim TS, Hur KB, Park JK, Korean Soc. Fluid Mach., 15(3), 51 (2012)
  3. Kim KM, Korean Ind. Chem. News, 11(3), 11 (2008)
  4. Lee S, Park S, Park C, Kim C, Lee J, Woo S, J. Korean Inst. Gas, 16(5), 14 (2012)
  5. Na WJ, Park HK, Korean Appl. Sci. Tech., 36(1), 153 (2019)
  6. Casagrande L, Lietti L, Nova I, Forzatti P, Baiker A, Appl. Catal. B: Environ., 22(1), 63 (1999)
  7. Komatsubara Y, Ida S, Fujitsu H, Mochida I, Fuel, 63(12), 1738 (1984)
  8. Forzatti P, Appl. Catal. A: Gen., 222(1-2), 221 (2001)
  9. Busca G, Lietti L, Ramis G, Berti F, Appl. Catal. B: Environ., 18(1-2), 1 (1998)
  10. Svachula J, Alemany LJ, Ferlazzo N, Forzatti P, Tronconi E, Bregani F, Ind. Eng. Chem. Res., 32(5), 826 (1993)
  11. Lietti L, Forzatti P, Bregani F, Ind. Eng. Chem. Res., 35(11), 3884 (1996)
  12. Topsoe NY, Anstrom M, Dumesic JA, Catal. Lett., 76(1-2), 11 (2001)
  13. Xiong SC, Xiao X, Liao Y, Dang H, Shan WP, Yang SJ, Ind. Eng. Chem. Res., 54(44), 11011 (2015)
  14. Lietti L, Alemany JL, Forzatti P, Busca G, Ramis G, Giamello E, Bregani F, Catal. Today, 29(1-4), 143 (1996)
  15. Odenbrand CUI, Gabrielsson PLT, Brandin JGM, Andersson LAH, Appl. Catal., 78(1), 109 (1991)
  16. Engweiler J, Harf J, Baiker A, J. Catal., 159(2), 259 (1996)
  17. Shen J, Hess C, Catalysts, 10(12), 1386 (2020)
  18. Hwang S, Jo SH, Kim J, Shin MC, Chun HH, Park H, Lee H, Reac. Kinet. Mech. Cat., 117, 583 (2016)
  19. Ma Z, Weng D, Wu X, Si Z, J. Environ. Sci., 24(7), 1305 (2012)
  20. Xu YF, Wu XD, Lin QW, Hu JF, Ran R, Weng D, Appl. Catal. A: Gen., 570, 42 (2019)
  21. Ma ZR, Wu XD, Harelind H, Weng D, Wang BD, Si ZC, J. Mol. Catal. A-Chem., 423, 172 (2016)
  22. Lin QC, Li JH, Ma L, Hao JM, Catal. Today, 151(3-4), 251 (2010)
  23. Song I, Lee H, Jeon SW, Kim DH, J. Catal., 382, 269 (2020)
  24. Alemany LJ, Berti F, Busca G, Ramis G, Robba D, Toledo GP, Trombetta M, Appl. Catal. B: Environ., 10(4), 299 (1996)
  25. Phil HH, Reddy MP, Kumar PA, Ju LK, Hyo JS, Appl. Catal. B: Environ., 78(3-4), 301 (2008)
  26. Na WJ, Park YJ, Bang HS, Bang JS, Park HK, Clean Technol., 22(2), 132 (2016)
  27. Kobayashi M, Miyoshi K, Appl. Catal. B: Environ., 72(3-4), 253 (2007)