화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.1, 69-85, January, 2022
Numerical simulation of surface vibration effects on improvement of pool boiling heat transfer characteristics of nanofluid
E-mail:
A numerical scheme for the effects of vibration on nanofluid pool boiling heat transfer was developed. For this purpose, a horizontal flat vibrating heated surface was considered. To model this phase-change phenomenon, the Eulerian-Eulerian approach was employed accompanied by the Rensselaer Polytechnic Institute (RPI) model to estimate the boiling heat flux on a solid surface, based on transient simulation. The k-ε turbulence model was used for simulating the Reynolds stresses appearing in the averaged Navier Stokes equation. The effects of the amplitude and frequency of vibration, nanofluid concentration along with magnitude of the heat flux on pool boiling heat transfer characteristics including heat transfer coefficient (HTC), vapor volume fraction and nanofluid velocity were studied. New analytical correlations for analyzing the heat transfer coefficient and nanofluid velocity based on the wall superheat temperature, amplitude and frequency of vibration were also developed. Results showed that applying mechanical vibration increased the boiling curve slope and the heat transfer coefficient. As a consequence, an increase of up to 30.11% and 17.5% in the heat transfer rate was achieved at lower heat fluxes for higher amplitude and frequency of oscillations, respectively.
  1. Sutharshan B, Mutyala M, Vijuk R, Mishra A, Energy Procedia, 7, 293 (2011)
  2. Ciftci E, Sozen A, Heat Transf. Res., 51, 104310 (2020)
  3. Alimoradi H, Shams M, Ashgriz N, Bozorgnezhad A, Case Stud. Therm. Eng., 24, 100829 (2020)
  4. Zolfagharnasab MH, Salimi M, Zolfagharnasab H, Alimoradi H, Shams M, Aghanajafi C, Powder Technol., 380, 1 (2021)
  5. Ham J, Cho H, Appl. Therm. Eng., 108, 158 (2016)
  6. Alimoradi H, Shams M, Valizadeh Z, Modares Mech. Eng., 16(12), 545 (2017)
  7. Bozorgnezhad A, Shams M, Kanani H, Hasheminasab M, J. Dispersion Sci. Technol., 36, 1190 (2015)
  8. Alimoradi H, Shams M, Modares Mech. Eng., 19(7), 1613 (2019)
  9. Roodbari M, Alimoradi H, Shams M, Aghanajafi C, J. Therm. Anal. Calorim., 1 (2021).
  10. Ciftci E, Sozen A, Int. J. Numer. Methods Heat Fluid Flow., 31, 2652 (2020)
  11. Etedali S, Afrand M, Abdollahi A, Int. J. Therm. Sci., 145, 105977 (2019)
  12. Sajith V, Madhusoodanan MR, Sobhan CB, ASME 2008, 555561 (2008).
  13. Hasheminasab M, et al., ASME 2014 12th Int. Conf. Nanochannels, Microchannels Minichannels, ICNMM2014-21586, V001T07A002, Chicago, Illinois (2014).
  14. Bozorgnezhad A, et al., ASME/JSME/KSME 2015 Jt. Fluids Eng. Conf., AJKFluids2015-22299, V001T22A004, Seoul, South Korea (2015).
  15. Bozorgnezhad A, Shams M, Kanani H, Hasherninasab M, Ahmadi G, Int. J. Hydrog. Energy, 41(42), 19164 (2016)
  16. Ashrafi M, Shams M, Bozorgnezhad A, Ahmadi G, Heat Mass Transf., 52, 2671 (2016)
  17. Atashi H, Alaei A, Kafshgari MH, Aeinehvand R, Rahimi SK, Exp. Heat Transf., 27(5), 428 (2014)
  18. Jeong JH, Kwon YC, Heat Mass Transf. und Stoffuebertragung, 42(12), 1155 (2006)
  19. Unno N, Yuki K, Taniguchi J, Satake S, Int. J. Heat Mass Transf., 153, 119588 (2020)
  20. Sathyabhama A, Prashanth SP, Heat Transf. - Asian Res., 46, 4960 (2015)
  21. Kim HY, Kim YG, Kang BH, Int. J. Heat Mass Transf., 47(12-13), 2831 (2004)
  22. Alangar S, Heat Mass Transf. und Stoffuebertragung, 53(1), 73 (2017).
  23. Alimoradi H, Shams M, Appl. Therm. Eng., 111, 1039 (2017)
  24. Shoghl SN, Bahrami M, Moraveji MK, Int. Commun. Heat Mass Transf., 58, 12 (2014)
  25. Valizadeh Z, Shams M, Heat Mass Transf. und Stoffuebertragung, 52(8), 1501 (2016).
  26. Kamel MS, Al-agha MS, Lezsovits F, Mahian O, J. Therm. Anal. Calorim., 142, 493505 (2019)
  27. Abadi SMANR, Ahmadpour A, Meyer JP, Int. J. Multiph. Flow, 118, 97 (2019)
  28. Shokouhmand H, Abadi SMANR, Heat Mass Transf. und Stoffuebertragung, 46(8-9), 891 (2010).
  29. Shokouhmand H, Abadi SMANR, Jafari A, Int. J. Mech. Mater. Des., 7, 313 (2011)
  30. Vadasz J, Meyer J, Govender S, Transp. Porous Media, 103, 279294 (2014)
  31. Li XD, Li K, Tu JY, Buongiorno J, Int. J. Heat Mass Transf., 69, 443 (2014)
  32. Li XD, Yuan Y, Tu JY, Int. J. Heat Mass Transf., 91, 467 (2015)
  33. Li X, Yuan Y, Tu J, Int. J. Therm. Sci., 98, 42 (2015)
  34. Mohammadpourfard M, Aminfar H, Sahraro M, Heat Mass Transf. und Stoffuebertragung, 50(8), 1167 (2014).
  35. Hamilton RL, Crosser OK, Ind. Eng. Chem. Fundam., 1, 187 (1962)
  36. Brinkman HC, J. Chem. Phys., 20(4), 571 (1952)
  37. Ishii M, Zuber N, AIChE J., 25, 843 (1979)
  38. Ranz WE, Marshall WR, Chem. Eng. Progress, 48, 141146 (1952)
  39. de Bertodano ML, Lahey RT, Jones OC, Nucl. Eng. Des., 146, 4352 (1994)
  40. Kurul N, Podowski MZ, Proceedings of 27th national heat transfer conference at minnieapolis, MN, USA, 2831 (1991).
  41. Kurul N, Podowski MZ, Proceedings of the 9th international heat transfer conference at Jerusalem, 2, 2126 (1990).
  42. Salehi H, Hormozi F, Heat Mass Transf., 54, 773784 (2017)
  43. Krepper E, Koncar B, Egorov Y, Nucl. Eng. Des., 237(7), 716 (2007)
  44. Tolubinsky VI, Kostanchuk DM, International Heat Transfer Conference 4, 23 (1970).
  45. Gerardi C, Buongiorno J, Hu L, Mckrell T, Nanoscale Res. Lett., 6, 232 (2011)
  46. Cole R, AIChE J., 6(4), 533 (1960)
  47. Akbari A, Alavi Fazel SA, Maghsoodi S, Kootenaei AS, J. Therm. Anal. Calorim., 135(1), 697 (2019)
  48. Aminfar H, Mohammadpourfard M, Sahraro M, Comput. Fluids, 66, 29 (2012)