화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.12, 690-696, December, 2021
금속 생체재료를 위한 Sn 함량에 따른 Zr-7Cu 합금설계
Zr-7Cu Alloy Design According to Sn Content for Bio-Metallic Materials
E-mail:
The purpose of this study is to develop a zirconium-based alloy with low modulus and magnetic susceptibility to prevent the stress-shielding effect and the generation of artifacts. Zr-7Cu-xSn (x = 1, 5, 10, 15 mass%) alloys are prepared by an arc melting process. Microstructure characterization is performed by microscopy and X-ray diffraction. Mechanical properties are evaluated using micro Vickers hardness and compression test. The magnetic susceptibility is evaluated using a SQUIDVSM. The average magnetic susceptibility value of the Zr-7Cu-xSn alloy is 1.176 X 10-8 cm3g-1. Corrosion tests of zirconiumbased alloys are conducted through polarization test. The average Icorr value of the Zr-7Cu-xSn alloy is 0.1912 μA/cm2. The elastic modulus value of 14 ~ 18 GPa of the zirconium-based alloy is very similar to the elastic modulus value of 15 ~ 30 GPa of the human bone. Consequently, the Sn added zirconium alloy, Zr-7Cu-xSn, is very interesting and attractive as a biomaterial that reduces the stress-shielding effect caused by differences of elastic modulus between human bone and metallic implants. In addition, this material has the potential to be used in metallic dental implants to effectively eliminate artifacts in MRI images due to low magnetic susceptibility.
  1. Kiradzhiyska DD, Mantcheva RD, Folia Med., 61, 34 (2019)
  2. Miura K, Yamada N, Hanada S, Jung TK, Itoi E, Acta Biomater., 7, 2320 (2011)
  3. Seo JM, Kim SJ, Chung H, Kim ET, Yu HG, Yu YS, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 24, 585 (2004)
  4. Parr GR, Gardner LK, Toth RW, J. Prosthet. Dent., 54, 410 (1985)
  5. Okazaki Y, Gotoh E, Biomater, 26, 11 (2005)
  6. Zhang C, Zhang L, Liu L, Lv L, Gao L, Liu N, Wang X, Ye J, J. Orthop. Surg. Res., 15, 40 (2020)
  7. Long M, Rack HJ, Biomater, 19, 1621 (1998)
  8. Nag S, Banerjee R, Fraser H, Acta Biomater., 3, 369 (2007)
  9. Shafiei F, Honda E, Takahashi H, Sasaki T, J. Dent. Res., 82, 602 (2003)
  10. Ernstberger T, Heidrich G, Bruening T, Krefft S, Buchhorn G, Klinger HM, Eur. Spine. J., 16, 179 (2007)
  11. Kocasarac HD, et al., Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 128, e161 (2019).
  12. Park KT, Lee TH, Jo NC, Nersisyan HH, Chun BS, Lee HH, Lee JH, J. Nucl. Mater., 436, 130 (2013)
  13. Yan Y, Han Y, Surf. Coat. Technol., 201, 5692 (2007)
  14. Vadlakonda S, Banerjee R, Puthcode A, Mirshams R, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 434, 372 (2006)
  15. Wei C, Luo L, Wu Z, Zhang J, Su S, Zhan Y, J. Mech. Behav. Biomed. Mater., 111, 104017 (2020)
  16. Mehjabeen A, Song T, Xu W, Tang HP, Qian M, Adv. Eng. Mater., 20, 180020 (2018)
  17. Okamoto H, J. Phase Equilib. Diffus., 31, 411 (2010)
  18. Niinomi M, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 243, 231 (1998)
  19. Hwang GJ, Master's Thesis (in Korean), p.1, Chosun University, Seoul, Republic of Korea (2018).
  20. Li Zhan Y, Jiang W, Mater. Des., 34, 479 (2012)
  21. Schenck JF, Med. Phys., 23, 815 (1996)
  22. Arrighini GP, Maestro M, Moccia R, J. Chem. Phys., 49, 882 (1968)
  23. Spees WM, Yablonskiy DA, Oswood MC, Ackerman JJH, Magn. Reson. Med., 45, 533 (2001)
  24. Jain V, Abdulmalik O, Propert KJ, Wehrli FW, Magn. Reson. Med., 68, 863 (2012)
  25. Zhou FY, Qiu KJ, Li HF, Huang T, Wang BL, Li L, Zheng YF, Acta Biomater., 9, 9578 (2013)
  26. Zhou FY, Qiu KJ, Bian D, Zheng YF, Lin JP, J. Mater. Sci. Technol., 30, 299 (2014)
  27. Kim MJ, Jang YW, Yoo YH, Kim JJ, Kim JG, J. Korean Electrochem. Soc., 13, 96 (2010)
  28. Charlena SGS, Fajar M, J. Phys. Conf., 776, 012056 (2016)
  29. Salman JM, Aziz ML, IQJMME, 19, 138 (2019)
  30. Eliaz N, Materials, 12, 407 (2019)
  31. Kadam SN, Jagdeo KR, Nair MR, IRJES, 3, 30 (2014)
  32. Xue R, Wang D, YAnd D, Zhang L, Xu X, Liu L, Wu D, Materials, 13, 5130 (2020)