화학공학소재연구정보센터
Macromolecular Research, Vol.29, No.12, 855-863, December, 2021
CO2/Propylene Oxide Copolymerization with a Bifunctional Catalytic System Composed of Multiple Ammonium Salts and a Salen Cobalt Complex Containing Sulfonate Anions
E-mail:
A (Salen)Co(III) complex tethering four quaternary ammonium salts with covalent bonds is one of the most highly active catalysts for CO2/epoxide copolymerization. In this work, we aimed to prepare similar (Salen)Co(III) complexes to which quaternary ammonium salts are linked via ionic interactions. Thus, multiple ammonium salts containing 2-5 quaternary ammonium salt units and (Salen)Co(III) complexes containing one or two -SO3 -[PhNH3]+ moieties were prepared. A binary catalytic system composed of the prepared multiple ammonium salts and the prepared (Salen)Co(III) complex containing -SO3 -[(nBu)4N]+ moieties showed high activity (TOF, 1500-4500 h-1) for CO2/propylene oxide (PO) copolymerization, whereas a combination of the multiple ammonium salts and the conventional (Salen)Co(III) complex not containing -SO3 -[(nBu)4N]+ moieties was inactive under the identical polymerization conditions of [PO]/[Co] = 20000. However, a substantial amount of cyclic carbonate was concomitantly generated, especially when a (Salen)Co(III) complex containing two -SO3 -[(nBu)4N]+ moieties was used (25-30%). This side-reaction could be mitigated by ca. 50% by employing a (Salen)Co(III) complex containing one -SO3 -[(nBu)4N]+ moiety. Cyclic carbonate generation can reasonably be ascribed to ammonium salts ([(nBu)4N]+[carbonate]-) not linked to the (Salen)Co(III) complex formed in the binary catalytic system.
  1. Lamparelli DH, Capacchione C, Catalysts, 11 (2021)
  2. Zhang YY, Wu GP, Darensbourg DJ, Trends Chem., 2, 750 (2020)
  3. Darensbourg DJ, Green Chem., 21, 2214 (2019)
  4. Kozak CM, Ambrose K, Anderson TS, Coord. Chem. Rev., 376, 565 (2018)
  5. Guo L, Lamb KJ, North M, Green Chem., 23, 77 (2021)
  6. Kim Y, Hyun K, Ahn D, Kim R, Park MH, Kim Y, ChemSusChem., 12, 4211 (2019)
  7. Hong M, Kim Y, Kim H, Cho HJ, Baik MH, Kim Y, J. Org. Chem., 83, 9370 (2018)
  8. Kim MH, Song T, Seo UR, Park JE, Cho K, Lee SM, Kim HJ, Ko YJ, Chung YK, Son SU, J. Mater. Chem. A, 5, 23612 (2017)
  9. Inoue S, Koinuma H, Tsuruta T, J. Polym. Sci. B: Polym. Phys., 7, 287 (1969)
  10. Marbach J, Hofer T, Bornholdt N, Luinstra GA, ChemistryOpen, 8, 828 (2019)
  11. Padmanaban S, Kim M, Yoon SH, J. Ind. Eng. Chem., 71, 336 (2019)
  12. Sudakar P, Sivanesan D, Yoon S, Macromol. Rapid Commun., 37(9), 788 (2016)
  13. Padmanaban S, Yoon S, Catalysts, 9, 892 (2019)
  14. Ree M, Hwang Y, Kim JS, Kim H, Kim G, Kim H, Catal. Today, 115(1-4), 134 (2006)
  15. Stahl SF, Luinstra GA, Catalysts, 10, 1 (2020)
  16. Varghese JK, Park DS, Jeon JY, Lee BY, J. Polym. Sci. A: Polym. Chem., 51(22), 4811 (2013)
  17. Tran CH, Kim SA, Moon Y, Lee Y, Ryu HM, Baik JH, Hong SC, Kim I, Catal. Today, 375, 335 (2021)
  18. Huang YJ, Qi GR, Wang YH, J. Polym. Sci. A: Polym. Chem., 40(8), 1142 (2002)
  19. Coates GW, Moore DR, Angew. Chem.-Int. Edit., 43, 6618 (2004)
  20. Lu XB, Ren WM, Wu GP, Accounts Chem. Res., 45, 1721 (2012)
  21. Darensbourg DJ, Wilson SJ, Green Chem., 14, 2665 (2012)
  22. Kember MR, Buchard A, Williams CK, Che. Commun., 47, 141 (2011)
  23. Noh EK, Na SJ, Sujith S, Kim SW, Lee BY, J. Am. Chem. Soc., 129(26), 8082 (2007)
  24. Min SSJK, Seong JE, Na SJ, Lee BY, Angew. Chem.-Int. Edit., 47, 7306 (2008)
  25. Na SJ, Sujith S, Cyriac A, Kim BE, Yoo J, Kang YK, Han SJ, Lee C, Lee BY, Inorg. Chem., 48(21), 10455 (2009)
  26. Dyduch K, Srebro-Hooper M, Lee BY, Michalak A, J. Comput. Chem., 39, 1854 (2018)
  27. Lee HJ, Baek JW, Seo YH, Lee HC, Jeong SM, Lee J, Lee CG, Lee BY, Molecules, 26, 2827 (2021)
  28. Jeon JY, Varghese JK, Park JH, Lee SH, Lee BY, Eur. J. Org. Chem., 2021, 3566 (2012)
  29. Min J, Seong JE, Na SJ, Cyriac A, Lee BY, Bull. Korean Chem. Soc., 30, 745 (2009)
  30. Cyriac A, Lee SH, Varghese JK, Park ES, Park JH, Lee BY, Macromolecules, 43(18), 7398 (2010)
  31. Plajer AJ, Williams CK, Angew. Chem.-Int. Edit., 60, 13372 (2021)
  32. Deacy AC, Moreby E, Phanopoulos A, Williams CK, J. Am. Chem. Soc., 142, 19150 (2020)
  33. Deng J, Ratanasak M, Sako Y, Tokuda H, Maeda C, Hasegawa JY, Nozaki K, Ema T, Chem. Sci., 11, 5669 (2020)
  34. Asaba H, Iwasaki T, Hatazawa M, Deng JY, Nagae H, Mashima K, Nozaki K, Inorg. Chem., 59(12), 7928 (2020)
  35. Yang GW, Zhang YY, Xie R, Wu GP, J. Am. Chem. Soc., 142(28), 12245 (2020)
  36. Yang GW, Xu CK, Xie R, Zhang YY, Zhu XF, Wu GP, J. Am. Chem. Soc., 143(9), 3455 (2021)
  37. Zhang CJ, Wu SQ, Boopathi S, Zhang XH, Hong X, Gnanou Y, Feng XS, ACS Sustain. Chem. Eng., 8, 13056 (2020)
  38. Mikhailov MA, Brylev KA, Virovets AV, Gallyamov MR, Novozhilov I, Sokolov MN, New J. Chem., 40, 1162 (2016)
  39. Cyriac A, Jeon JY, Varghese JK, Park JH, Choi SY, Chung YK, Lee BY, Dalton Trans., 41, 1444 (2012)
  40. Hager EB, Makhubela CE, Smith GS, Dalton Trans., 41, 13927 (2012)
  41. Holbach M, Zheng X, Burd C, Jones CW, Weck M, J. Org. Chem., 71, 2903 (2006)
  42. Lu XB, Shi L, Wang YM, Zhang R, Zhang YJ, Peng XJ, Zhang ZC, Li B, J. Am. Chem. Soc., 128(5), 1664 (2006)
  43. Yoo J, Na SJ, Park HC, Cyriac A, Lee BY, Dalton Trans., 39, 2622 (2010)
  44. Roznowska A, Dyduch K, Lee BY, Michalak A, J. Mol. Model., 26, 113 (2020)