화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.106, 113-127, February, 2022
Investigating the Cold Plasma Surface Modification of Kaolin- and Attapulgite-Bound Zeolite A
E-mail:
Hydrophilic zeolites with low catalytic activity are considered as suitable adsorbents for drying gas streams containing olefinic compounds. In this contribution, the surface treatment of kaolin and attapulgite/ zeolite A extrudates is investigated using argon glow discharge plasma. The zeolite is synthesized from kaolin using the hydrothermal method. Surface and bulk characterization is performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physisorption, Fourier-transform infrared (FTIR) spectroscopy, temperature-programmed-desorption (TPD) of NH3 and X-ray photoelectron spectroscopy (XPS) techniques. Plasma treatment increases surface area and pore volume, but it decreases the weak acidic site density of the extrudates. The obtained results show that attapulgite/zeolite extrudates are more affected by plasma treatment than kaolin/zeolite extrudates. The catalytic activity of untreated and plasma-treated extrudates are compared with respect to coke formation resulting from 1-butene and 1,3-butadiene. The plasma-treated sample is more resistant to coke formation (~35% decrease compared to untreated one). The potassium contents of extrudates decreased as a result of sputtering loosely bound potassium cations on the crystal surface by argon ions, which led to a decrease in water sorption capacity (by ~15% of the initial sorption capacity).
  1. Loiola AR, Andrade JCRA, Sasaki JM, da Silva LRD, J. Colloid Interface Sci., 367, 34 (2012)
  2. Abdullahi T, Harun Z, Othman MHD, Adv. Powder Technol., 28, 1827 (2017)
  3. Wang Y, Ind. Eng. Chem. Res., 59, 8304 (2020)
  4. Jaramillo E, Chandross M, J. Phys. Chem. B., 108, 20155 (2004)
  5. Tahraoui Z, Nouali H, Marichal C, Forler P, Klein J, Daou TJ, Molecules, 25, 944 (2020)
  6. Akhtar F, Andersson L, Ogunwumi S, Hedin N, Bergstr?m L, J. Eur. Ceram. Soc., 34, 1643 (2014)
  7. Whiting GT, Chowdhury AD, Oord R, Paalanen P, Weckhuysen BM, Faraday Discuss., 188, 369 (2016)
  8. Shams K, Mirmohammadi SJ, Microporous Mesoporous Mater., 106, 268 (2007)
  9. Celik H, Appl. Clay Sci., 50, 245 (2010)
  10. Aid A, Andrei RD, Amokrane S, Cammarano C, Nibou D, Hulea V, Appl. Clay Sci., 146, 432 (2017)
  11. Rouquerol F, Rouquerol J, Sing K, Adsorption by Powders and Porous Solids, first ed., Academic Press, 2014.
  12. Guggenheim S, Krekeler MPS, in: Gal?n E, Singer A (Eds.), The Structures and Microtextures of the Palygorskite?Sepiolite Group Minerals, Elsevier, pp. 3-32, 2011.
  13. Xie Q, Chen T, Zhou H, Xu X, Xu H, Ji J, Lu H, Balsam W, Geoderma, 192, 39 (2013)
  14. Wang W, Dong W, Tian G, Sun L, Wang Q, Hui A, Mu B, Wang A, Powder Technol, 354, 1 (2019)
  15. Bhattacharyya KG, Gupta SS, Adv. Colloid Interface Sci., 140, 114 (2008)
  16. Zhang Y, Long M, Huang P, Yang H, Chang S, Hu Y, Tang A, Mao L, Nano Res., 10, 2633 (2017)
  17. Li X, Peng K, Chen H, Wang Z, Sci. Rep., 8, 11663 (2018)
  18. Otieno SO, Kengara FO, Kemmegne-Mbouguen JC, Langmi HW, Kowenje CBO, Mokaya R, Microporous Mesoporous Mater., 290, 109668 (2019)
  19. Alkan M, Hopa C, Yilmaz Z, G?ler H, Microporous Mesoporous Mater., 86, 176 (2005)
  20. Maia AAB, Ang?lica RS, Neves RF, Clay Miner., 46, 127 (2011)
  21. Boucheffa Y, Thomazeau C, Cartraud P, Magnoux P, Guisnet M, Jullian S, Ind. Eng. Chem. Res., 36, 3198 (1997)
  22. Lee H, in: Meier WM, Uytterhoeven JB (Eds.), Applied Aspects of Zeolite Adsorbents, American Chemical Society, pp. 311-318, 1973.
  23. Lynch DT, Wanke SE, React. Kinet. Catal. Lett., 52, 241 (1997)
  24. Liu J, Zhu S, Zhang L, Liu Z, Cui Q, Wang H, ChemistrySelec, 5, 12844 (2020)
  25. Sun H, Shen B, Adsorption, 19, 111 (2013)
  26. Zolfaghari P, Khaledian HR, Aliasgharlou N, Khorram S, Karimi A, Khataee A, Appl. Surf. Sci., 490, 266 (2019)
  27. Khataee A, Rad TS, Vahid B, Khorram S, Ultrason. Sonochem., 33, 37 (2016)
  28. Wang Z, Zhang Y, Neyts EC, Cao X, Zhang X, Jang BWL, Liu CJ, ACS Catal., 8, 2093 (2018)
  29. George A, Shen B, Craven M, Wang Y, Kang D, Wu C, Tu X, Renew. Sustain. Energy Rev., 135 (2021)
  30. Di L, Zhang J, Zhang X, Wang H, Li H, Li Y, Bu D, J. Phys. D Appl Phys., 54 (2021)
  31. De Velasco-Maldonado PS, Hern?ndez-Montoya V, Montes-Mor?n MA, V?zquez NAR, P?rez-Cruz MA, Appl. Surf. Sci., 434, 1193 (2018)
  32. Sahin O, Kaya M, Saka C, Appl. Clay Sci., 116-117, 46 (2015)
  33. Wahono SK, Suwanto A, Prasetyo DJ, Hernawan, Jatmiko TH, Vasilev K, Appl. Surf. Sci., 483, 940 (2019)
  34. Xu J, Xia P, Zhang Q, Guo F, Xia Y, Tian H, Int. J. Hydrog. Energy, 46, 23174 (2021)
  35. Schnee J, Quezada M, Norosoa O, Azzolina-Jury F, Catal. Today, 337, 195 (2019)
  36. Yavuz O, Saka C, Appl. Clay Sci., 85, 96 (2013)
  37. Huang Y, Yu Q, Li M, Jin S, Fan J, Zhao L, Yao Z, Chem. Eng. Sci., 418 (2021)
  38. Roz ME, Lakiss L, Valtchev V, Mintova S, Thibault-Starzyk F, Microporous Mesoporous Mater., 158, 148 (2012)
  39. Liu CJ, Vissokov GP, Jang BWL, Catal. Today, 72, 173 (2002)
  40. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87, 1051 (2015)
  41. Kaushik VK, Vijayalakshmi RP, Choudary NV, Bhat SGT, Microporous Mesoporous Mater., 51, 139 (2002)
  42. Valiullin R, K?rger J, Cho K, Choi M, Ryoo R, Microporous Mesoporous Mater., 142, 236 (2011)
  43. Prokof��ev VY, Gordina NE, Borisova TN, Shamanaeva NV, Microporous Mesoporous Mater., 280, 116 (2019)
  44. Leofanti G, Padovan M, Tozzola G, Venturelli B, Catal. Today., 41, 207 (1998)
  45. Chen W, Song G, Lin Y, Qiao J, Wu T, Yi X, Kawi S, Catalysis Today, In Press, 2021.
  46. Lok BM, Marcus BK, Angell CL, Zeolites, 6, 185 (1986)
  47. Auepattana-aumrung C, Suriye K, Jongsomjit B, Panpranot J, Praserthdam P, Catal. Today., 358, 237 (2020)
  48. Zhang J, Zhu X, Wang G, Wang P, Meng Z, Li C, Chem. Eng. J., 327, 278 (2017)
  49. Henao-Sierra W, Romero-S?ez M, Gracia F, Cacua K, Buitrago-Sierra R, Microporous Mesoporous Mater., 265, 250 (2018)
  50. Yamamoto T, Kim YH, Kim BC, Endo A, Thongprachan N, Ohmori T, Chem. Eng. J., 181-182, 443 (2012)
  51. Barrer RM, Denny AF, J. Chem. Soc. (Resumed) 4684?4692, 1964.
  52. Yamanaka S, Malla PB, Komarneni S, Zeolites, 9, 18 (1989)
  53. Jensen B, Kuznetsova T, Kvamme B, Olsen R, Microporous Mesoporous Mater., 201, 105 (2015)
  54. Cheung O, Hedin N, RSC Adv., 4, 14480 (2014)
  55. Zhu J, Zhang P, Wang Y, Wen K, Su X, Zhu R, He H, Xi Y, Appl. Clay Sci., 159, 60 (2018)
  56. Safarpour M, Vatanpour V, Khataee A, Zarrabi H, Gholami P, Yekavalangi ME, Desalination, 411, 89 (2017)
  57. Asgharizadeh S, Khorram S, Lazemi M, Hosseinzadeh A, Malfois M, Phys. Chem. Chem. Phys., 22, 17365 (2020)
  58. Taseidifar M, Khataee A, Vahid B, Khorram S, Joo SW, J. Mol. Catal. A: Chem., 404-405, 218 (2015)
  59. Khataee A, Bozorg S, Khorram S, Fathinia M, Hanifehpour Y, Joo SW, Ind. Eng. Chem. Res., 52, 18225 (2013)
  60. Taaca KLM, Nakajima H, Thumanu K, Janphuang P, Chanlek N, Vasquez MR, Mater. Chem. Phys., 250 (2020)
  61. Osonio AP, Vasquez MR, Appl. Surf. Sci., 432, 156 (2018)
  62. Moreira JC, Boca Santa RAA, Miraglia GL, Soares C, Riella HG, Microporous Mesoporous Mater., 279, 262 (2019)
  63. Cheng DG, Catal. Surv. Asia, 12, 145 (2008)
  64. Tie D, Feyerabend F, Hort N, Willumeit R, Hoeche D, Adv. Eng. Mater., 12, B699 (2010)
  65. Wu PY, Jiang YP, Zhang QY, Jia Y, Peng DY, Xu W, New J. Chem., 40, 2878 (2016)
  66. Wang X, Plackowski CA, Nguyen AV, Powder Technol., 295, 27 (2016)
  67. Wang X, Wang K, Plackowski CA, Nguyen AV, Appl. Surf. Sci., 367, 281 (2016)
  68. El-Nahas S, Osman AI, Arafat AS, Al-Muhtaseb AAH, Salman HM, J. Water Process. Eng., 33, 101104 (2020)
  69. Elmi C, Guggenheim S, Gier? R, Clays Clay Miner., 64, 537 (2016)
  70. Gonzalez-Elipe AR, Espinos JP, Munuera G, Sanz J, Serratosa JM, J. Phys. Chem., 92, 3471 (1988)
  71. Qteish A, J. Phys. Chem. Solids, 124, 186 (2019)
  72. Fairley N, Fernandez V, Richard-Plouet M, Guillot-Deudon C, Walton J, Smith E, Flahaut D, Greiner M, Biesinger M, Tougaard S, Morgan D, Baltrusaitis J, Applied Surface Science Advances (ASSA), September 1, 2021.
  73. Lieberman MA, Lichtenberg AJ, Principles of Plasma Discharges and Materials Processing, 2nd Ed., John Wiley & Sons Inc., New Jersey, 2005.
  74. Huang M, Kaliaguine S, Stud. Surf. Sci. Catal., 78, 559 (1993)
  75. Huang M, Kaliaguine S, Auroux A, Stud. Surf. Sci. Catal., 97, 311 (1995)
  76. Busca G, Gervasini A, in: Ch, Song (Eds.), Solid acids, surface acidity and heterogeneous acid catalysis, Academic Press, pp. 1-90, 2020.
  77. Novikova L, Roessner F, Belchinskaya L, AlSawalha M, Krupskaya V, Appl. Clay Sci., 101, 229 (2014)
  78. Solomon DH, Clays Clay Miner., 16, 31 (1968)
  79. Solomon, DH Swift JD, Murphy AJ, J. Macromol. Sci.: Part A ? Chem., 5, 587 (1971)
  80. Komade Pl, Madejov? J, In: Schoonheydt R, Johnston CT, Bergaya F (Eds.), Acid Activation of Clay Minerals, Elsevier, pp. 385-409, 2013.