Journal of Industrial and Engineering Chemistry, Vol.106, 160-167, February, 2022
A novel multiemissive Ln/covalent-organic frameworks for ratiometric detection of 2,6-dipicolinic acid
E-mail:
As one of the specific biomarkers of anthrax, timely, sensitive and accurate detection of 2,6-dipicolinic acid (DPA) plays an important role in preventing biological weapons attacks and disease outbreaks. Here, multiemission Eu3+/covalent- organic framework (COFDTA-TFP) and Tb3+/COFDTA-TFP were constructed by the coordination between Eu3+ or Tb3+ with fluorescent COFDTA-TFP which was prepared by amine-aldehyde dehydration condensation between 2,5-diaminoterephthalic acid and 2,4,6- triformylphloroglucinol for the first time. The Eu3+/COFDTA-TFP and Tb3+/COFDTA-TFP can emit nonoverlapping fluorescence of COFDTA-TFP and Eu3+ or Tb3+, which was used to ratiometric detection of DPA. Due to the strong coordination between the nitrogen atoms in the pyridine ring and the oxygen atoms in the carboxyl group of DPA with Eu3+ or Tb3+, DPA replaced coordinated H2O to sensitize fluorescence of Eu3+ or Tb3+ by ‘‘antenna” effect but fluorescence of COFDTA-TFP with two-dimensional lamellar structure was kept constant as a reference. The linear range and detection limit of ratiometric fluorescence sensor based on Eu3+/COFDTA-TFP for detection of DPA are 0.01.12 mM and 4.2 nM, respectively. The linear range and detection limit of ratiometric fluorescence sensor based on Tb3+/COFDTA-TFP for detection of DPA are 0.01.9.0 μM and 2.9 nM, respectively.
Keywords:Covalent-organic framework;Lanthanide ions;2,6-Dipicolinic acid;Multiemission;Ratiometric fluorescence detection
- Xu M, Huang W, Du DK, Huang HY, Deng JJ, Zhou TS, Anal. Methods, 11, 4267 (2019)
- Xing K, Huang W, Fan RQ, Gai S, Zheng XB, Wang P, Yang YL, ACS Appl. Mater. Interfaces, 11, 36081 (2019)
- Gao R, Ko J, Cha K, Jeon JH, Rhie GE, Choi J, deMello AJ, Biosens. Bioelectron., 72, 230 (2015)
- Buiarelli F, Sonego E, Uccelletti D, Bruni E, Di Filippo P, Pomata D, Perrino C, Marcovecchio F, Simonetti G, Microchem. J., 149 (2019)
- Wang H, Wu XM, Chem. Eng. J., 399 (2020)
- Goodacre R, Shann B, Gilbert RJ, Timmins EM, McGovern AC, Alsberg BK, Kell DB, Logan NA, Anal. Chem., 72, 119 (2000)
- Guo L, Liang M, Wang X, Kong R, Chen G, Xia L, Qu F, Chem. Sci., 11, 2407 (2020)
- Zhang G, Xiang M, Kong RM, Qu F, Analyst, 145, 6254 (2020)
- Tan Q, Zhang R, Zhang G, Liu X, Qu F, Lu L, Anal. Bioanal. Chem., 412, 1317 (2020)
- Wang H, Wang X, Liang M, Chen G, Kong RM, Xia L, Qu F, Anal. Chem., 92, 3366 (2020)
- Kaczmarek AM, Jena HS, Krishnaraj C, Rijckaert H, Veerapandian SKP, Meijerink A, Van Der Voort P, Angew. Chem. Int. Ed. Engl., 60, 3727 (2021)
- Razumkova IA, Sedykh AE, Denisenko YG, Muller-Buschbaum K, J. Ind. Eng. Chem., 92, 218 (2020)
- Zeng X, Hu J, Zhang M, Wang F, Wu L, Hou X, Anal. Chem., 92, 2097 (2020)
- Krishnaraj C, Kaczmarek AM, Jena HS, Leus K, Chaoui N, Schmidt J, Van Deun R, Van der Voor P, ACS Appl. Mater. Interfaces, 11, 27343 (2019)
- Luan K, Meng R, Shan C, Cao J, Jia J, Liu W, Tang Y, Anal. Chem., 90, 3600 (2018)
- Tong YJ, Yu LD, Zheng J, Liu G, Ye Y, Huang S, Chen G, Yang H, Wen C, Wei S, Xu J, Zhu F, Pawliszyn J, Ouyang G, Anal. Chem., 92, 15550 (2020)
- Yu Y, Ma JP, Dong YB, CrystEngComm, 14, 7157 (2012)
- Nishiyabu R, Aime C, Gondo R, Noguchi T, Kimizuka N, Angew. Chem. Int. Ed. Engl., 48, 9465 (2009)
- Cable ML, Kirby JP, Sorasaenee K, Gray HB, Ponce A, J. Am. Chem. Soc., 129, 1474 (2007)
- Wang YN, Wang SD, Wang WJ, Hao XX, Qi H, Spectrochim. Acta, Part A, 229 (2020)
- Yang ZR, Wang MM, Wang XS, Yin XB, Anal. Chem., 89, 1930 (2017)
- Yilmaz MD, Oktem HA, Anal. Chem., 90, 4221 (2018)
- Arenz S, Babai A, Binnemans K, Driesen K, Giernoth R, Mudring AV, Nockemann P, Chem. Phys. Lett., 402, 75 (2005)
- Li ZD, Zhan ZY, Jia YJ, Li Z, Hu M, J. Ind. Eng. Chem., 97, 180 (2021)
- Zuo H, Li Y, Liao Y, ACS Appl.Mater. Interfaces, 11, 39201 (2019)
- Abdallah A, Freslon S, Fan X, Rojo A, Daiguebonne C, Suffren Y, Bemot K, Calvez G, Roisnel T, Guillou O, Inorg. Chem., 58, 462 (2019)
- Yu L, Feng LX, Xiong L, Li S, Xu Q, Pan XY, Xiao YX, ACS Appl. Mater. Interfaces, 13, 11646 (2021)
- Feng X, Shang Y, Zhang H, Li R, Wang W, Zhang D, Wang L, Li Z, RSC Adv., 9, 16328 (2019)
- Krekic K, Klintuch D, Pietschnig R, Chem. Commun., 53, 11076 (2017)
- Mi X, Sheng D, Yu Y, Wang Y, Zhao L, Lu J, Li Y, Li D, Dou J, Duan J, Wang S, ACS Appl. Mater. Interfaces, 11, 7914 (2019)
- Sun T, Hao S, Fan R, Zhang J, Chen W, Zhu K, Wang P, Fang X, Yang Y, Anal. Chim. Acta, 1142, 211 (2021)
- Dalapati S, Jin E, Addicoat M, Heine T, Jiang D, J. Am. Chem. Soc., 138, 5797 (2016)
- Grunenberg L, Savasci G, Terban MW, Duppel V, Moudrakovski I, Etter M, Dinnebier RE, Ochsenfeld C, Lotsch BV, J. Am. Chem. Soc., 143, 3430 (2021)
- Guo L, Yang L, Li M, Kuang L, Song Y, Wang L, Coordin. Chem. Rev., 440 (2021)
- Song Y, Guo L, Du Y, Yang L, Wang L, Chem. Commun., 56, 14913 (2020)
- Yang L, Song Y, Lin C, Hou L, Guo L, Lei Y, Wang L, Sens. Actuators, B, 341 (2021)
- Wang H, Zheng Z, Xu P, Li L, Zeng G, Xiao R, Tang Z, Huang D, Tang L, Lai C, Jiang D, Liu Y, Yi H, Qin L, Ye S, Ren X, Tang W, Chem. Soc. Rev., 48, 488 (2019)
- Diercks CS, Yaghi OM, Science, 355, eaal1585 (2017)
- Liu L, Wang X, Wang X, Xu G, Zhao YF, Wang M, Lin J, Zhao R, Wu Y, J. Hazard. Mater., 403 (2021)
- Smith BJ, Overholts AC, Hwang N, Dichtel WR, Chem. Commun., 52, 3690 (2016)
- Yang ST, Kim J, Cho HY, Kim S, Ahn WS, RSC Adv., 2, 10179 (2012)
- Afshari M, Dinari M, J. Hazard. Mater., 385 (2020)
- Ai R, He Y, Sens. Actuators, B, 304 (2020)
- Deng Y, Zhang Z, Du P, Ning X, Wang Y, Zhang D, Liu J, Zhang S, Lu X, Angew. Chem. Int. Ed. Engl., 59, 6082 (2020)
- Pachfule P, Acharjya A, Roeser J, Langehahn T, Schwarze M, Schomacker R, Thomas A, Schmidt J, J. Am. Chem. Soc., 140, 1423 (2018)
- Lyle SJ, Waller PJ, Yaghi OM, Trends Chem., 1, 172 (2019)
- Li F, Ding LG, Yao BJ, Huang N, Li JT, Fu QJ, Dong YB, J. Mater. Chem. A, 6, 11140 (2018)
- Rong M, Lin L, Song X, Zhao T, Zhong Y, Yan J, Wang Y, Chen, Anal. Chem., 87, 1288 (2015)
- Yue JY, Wang L, Ma Y, Yang YP, Zhang YQ, Jiang Y, Tang B, Dalton Trans., 48, 17763 (2019)
- Tian Y, Fu J, Zhang Y, Cao K, Bai C, Wang D, Phys. Chem. Chem. Phys., 17, 7214 (2015)
- Shao DD, Hou GS, Li JX, Wen T, Ren XM, Wang XK, Chem. Eng. J., 255, 604 (2014)
- Dementjev AP, de Graaf A, van de Sanden MCM, Maslakov KI, Naumkin AC, Serov AA, Diamond Relat. Mater., 9, 1904 (2000)
- Yin HQ, Yin F, Yin XB, Chem. Sci., 10, 11103 (2019)
- Gan Z, Hu X, Huang X, Li Z, Zou X, Shi J, Zhang W, Li Y, Xu Y, Sens. Actuators, B, 328 (2021)
- Liu W, Dai X, Wang Y, Song L, Zhang L, Zhang D, Xie J, Chen L, Juan D, Wang J, Chai Z, Wang S, Environ. Sci. Technol., 53, 332 (2019)
- Li G, Zhang Y, Geng D, Shang M, Peng C, Cheng Z, Lin J, ACS Appl. Mater. Interfaces, 4, 296 (2012)
- de Faria EH, Nassar EJ, Ciuffi KJ, Vicente MA, Trujillano R, Rives V, Calefi PS, ACS Appl. Mater. Interfaces, 3, 1311 (2011)
- Altunbas O, Ozdas A, Yilmaz MD, J. Hazard. Mater., 382 (2020)
- Hou L, Song Y, Xiao Y, Wu R, Wang L, Talanta, 209 (2020)
- Liu ML, Chen BB, He JH, Li CM, Li YF, Huang CZ, Talanta, 191, 443 (2019)
- Wang QX, Xue SF, Chen ZH, Ma SH, Zhang S, Shi G, Zhang M, Biosens. Bioelectron., 94, 388 (2017)
- Yang H, Lu F, Zhan X, Tian M, Yuan Z, Lu C, Talanta, 208 (2020)
- Zhang L, Wang Z, Zhang J, Shi C, Sun X, Zhao D, Liu B, Nanomaterials, 9, 1234 (2019)
- Rong M, Deng X, Chi S, Huang L, Zhou Y, Shen Y, Chen X, Microchim. Acta, 185, 201 (2018)