화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.106, 449-459, February, 2022
Automated synthesis and data accumulation for fast production of high-performance Ni nanocatalysts
E-mail:,
Diverse methods have been developed for the synthesis of active nanocatalysts involving various heterogeneous catalytic reactions. Thus far, numerous trial-and-error runs have been done to find the effective and practical ways. In the present work, the All-In-One (AIO) reactor system with a well-designed synthesis program, now in pilot stage, was first exploited as a reliable synthesis tool to find the optimum conditions for the production of Ni nanocatalysts. Using an activated charcoal support, active Ni nanoparticles of 7.8.11.8 nm (labeled A001-A007 in the program) were produced. These were achieved using a melt-impregnation process, which was controlled by variations in the applied gas (N2 and H2) and temperature (400 °C, 450 °C, and 500 °C) used as critical factors in the calcination step. Based on the optimization of the reaction sequence, each Ni nanocatalyst could be prepared within 5 h and 22 min. In particular, the optimum Ni nanocatalyst (A006) with the smallest particle size (7.8 nm), prepared under H2 flow at 400 °C, exhibits the highest catalytic activity (0.748 mmol4-NP·gcat -1·s-1) among the Ni catalysts for 4-nitrophenol (4-NP) reduction to 4-aminophenol (4-AP). This activity is much higher than that of conventional supported Ni nanocatalysts (0.551 mmol4-NP·gcat -1·s-1) produced using the wetness method.
  1. Sun S, Murray CB, Weller D, Folks L, Moser A, Science, 287(5460), 1989 (2000)
  2. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, et al., Adv. Mater., 15, 353 (2003)
  3. Rawalekar, Mokari T, Adv. Energy Mater., 3(1), 12 (2013)
  4. Liu Y, Goebl J, Yin Y, Chem. Soc. Rev., 42(7), 2610 (2013)
  5. Kovalenko MV, Manna L, Cabot A, Hens Z, Talapin DV, Kagan CR, et al., ACS Nano, 9(2), 1012 (2015)
  6. Mattox TM, Ye X, Manthiram K, Schuck PJ, Alivisatos AP, Urban JJ, Adv. Mater., 27(38), 5830 (2015)
  7. Burda C, Chen X, Narayanan R, El-Sayed MA, Chem. Rev., 105(4), 1025 (2005)
  8. Khan I, Saeed K, Khan I, Arabian J. Chem., 12(7), 908 (2019)
  9. Xu R, Du L, Adekoya D, Zhang G, Zhang S, Sun S, et al., Adv. Energy Mater., 11(15), 2001537 (2021)
  10. Li Y, Somorjai GA, Nano Lett., 10(7), 2289 (2010)
  11. Park JS, Kim JK, Hong JH, Cho JS, Park SK, Kang YC, Nanoscale, 11(41), 19012 (2019)
  12. Purbia R, Paria S, Nanoscale, 7, 19789 (2015)
  13. Sun Q, Wang N, Xu Q, Yu J, Adv. Mater., 32(44), 2001818 (2020)
  14. Kalai DY, Stangeland K, Jin Y, Yu Z, J. CO2 Util., 25, 346 (2018)
  15. Ko CH, Park JG, Park JC, Song H, Han SS, Kim JN, Appl. Surf. Sci., 253(13), 5864 (2007)
  16. Yang CM, Liu PH, Ho YF, Chiu CY, Chao KJ, Chem. Mater., 15(1), 275 (2003)
  17. Huang Y, Zhao T, Zeng L, Tan P, Xu J, Electrochim. Acta, 190, 956 (2016)
  18. Yan P, Mensah J, Adesina A, Kennedy E, Stockenhuber M, Appl. Catal. B: Environ., 267, 118690 (2020)
  19. Choi YS, Moschetta EG, Miller JT, Fasulo M, McMurdo MJ, Rioux RM, et al., ACS Catal., 1(10), 1166 (2011)
  20. Kweon H, Jang S, Bereketova A, Park JC, Park KH, RSC Adv., 9(25), 14154 (2019)
  21. Zhu T, Dong J, Niu L, Chen G, Ricardez-Sandoval L, Wen X, et al., Appl. Clay Sci., 203, 106003 (2021)
  22. Han J, Cho J, Kim JC, Ryoo R, ACS Catal., 8(2), 876 (2018)
  23. Munnik P, de Jongh PE, de Jong KP, Chem. Rev., 115(14), 6687 (2015)
  24. de Jongh PE, Eggenhuisen TM, Adv. Mater., 25, 6672 (2013)
  25. Chen S, Ciotonea C, Ungureanu A, Dumitriu E, Catrinescu C, Wojcieszak R, et al., Catal. Today, 334, 48 (2019)
  26. Eggenhuisen TM, den Breejen JP, Berdoes K, de Jongh PE, de Jong KP, J. Am. Chem. Soc., 132, 18318 (2010)
  27. Park JC, Yeo SC, Chun DH, Lim JT, Yang JI, Lee HT, et al., J. Mater. Chem. A, 2(35), 14371 (2014)
  28. Park JC, Kwon JI, Kang SW, Chun DH, Jung H, Lee HT, et al., New J. Chem., 40, 9586 (2016)
  29. Lee HK, Lee JH, Seo JH, D.H. Chun, S.W. Kang, D.W. Lee, et al.,, J. Catal., 378, 289 (2019)
  30. Burger B, Maffettone PM, Gusev VV, Aitchison CM, Bai Y, Wang X, et al., Nature, 583(7815), 237 (2020)
  31. Moliner M, Rom?n-Leshkov Y, Corma A, Acc. Chem. Res., 52, 2971 (2019)
  32. Li J, Tu Y, Liu R, Lu Y, Zhu XI, Adv. Sci., 7(7), 1901957 (2020)
  33. Coley CW, Thomas DA, Lummiss JAM, Jaworski JN, Breen CP, Schultz V, et al., Science, 365(6453) (2019)
  34. Adamo A, Beingessner RL, Behnam M, Chen J, Jamison TF, Jensen KF, et al., Science, 352(6281), 61 (2016)
  35. Pan J, El-Ballouli AO, Rollny L, Voznyy O, Burlakov VM, Goriely A, et al., ACS Nano, 7(11), 10158 (2013)
  36. Liu Y, Esan OC, Pan Z, An L, Energy and AI, 3, 100049 (2021)
  37. Peplow M, Nature, 512, 20 (2014)
  38. Nguyen TN, Nhat TTP, Takimoto K, Thakur A, Nishimura S, Ohyama J, et al., ACS Catal., 10(2), 921 (2020)
  39. Toyao T, Maeno Z, Takakusagi S, Kamachi T, Takigawa I, Shimizu KI, ACS Catal., 10(3), 2260 (2020)
  40. Lamoureux PS, Winther KT, Torres JAG, Streibel V, Zhao M, Bajdich M, et al., ChemCatChem, 11(16), 3581 (2019)
  41. McCullough K, Williams T, Mingle K, Jamshidi P, Lauterbach J, Phys. Chem. Chem. Phys., 22, 11174 (2020)
  42. Schlogl R, ChemCatChem, 9, 533 (2017)
  43. Song Y, Ozdemir E, Ramesh S, Adishev A, Subramanian S, Harale A, et al., Science, 367(6479), 777 (2020)
  44. Munnik P, Velthoen MEZ, de Jongh PE, de Jong KP, Gommes CJ, Angew. Chem. Int. Ed., 53(36), 9493 (2014)
  45. Huang J, Yan Y, Saqline S, Liu W, Liu B, Appl. Catal. B: Environ., 275, 119109 (2020)
  46. Mart?n-Jimeno FJ, Su?arez-Garc?a F, Paredes JI, Mart?nez-Alonso A, Tascon JMD, J. Alloys Compd., 853, 157348 (2021)
  47. Kim D, Kang H, Park H, Park S, Park JC, Park KH, Eur. J. Inorg. Chem., 2016(21), 3469 (2016)
  48. Nurunnabi M, Fujimoto KI, Suzuki K, Li B, Kado S, Kunimori K, et al., Catal. Commun., 7(2), 73 (2006)
  49. Tsubaki N, Sun S, Fujimoto K, J. Catal., 199(2), 236 (2001)
  50. Qin L, Zeng Z, Zeng G, Lai C, Duan A, Xiao R, et al., Appl. Catal. B: Environ., 259, 118035 (2019)
  51. Revathy TA, Dhanavel S, Sivaranjani T, Narayanan V, Maiyalagan T, Stephen A, Appl. Surf. Sci., 449, 764 (2018)
  52. Park JC, Kim A, Jang S, Yang JI, Kang SW, Lee CW, et al., ChemCatChem, 11(3), 991 (2019)
  53. Liu X, Astruc D, Adv. Synth. Catal., 360(18), 3426 (2018)
  54. Bahuguna A, Kumar A, Krishnan V, Asian J. Org. Chem., 8(8), 1263 (2019)
  55. Gandia LM, Montes M, J. Catal., 145(2), 276 (1994)
  56. Lee IG, Ihm SK, Ind. Eng. Chem. Res., 48(3), 1435 (2009)
  57. Formenti D, Ferretti F, Scharnagl FK, Beller M, Chem. Rev., 119, 2611 (2019)
  58. Grzeschik R, Sch?ffer D, Holtum T, Kupper S, Hoffmann A, Schl?cker S, J. Phys. Chem. C, 124, 2939 (2020)
  59. Cao HL, Huang HB, Chen Z, Karadeniz B, Lu J, Cao R, ACS Appl. Mater. Interfaces, 9(6), 5231 (2017)
  60. Herv?s P, P?rez-Lorenzo M, Liz-Marz?n LM, Dzubiella J, Lu Y, Ballauff M, Chem. Soc. Rev., 41(17), 5577 (2012)
  61. Wunder S, Lu Y, Albrecht M, Ballauff M, ACS Catal., 1, 908 (2011)
  62. Jiang YF, Yuan CZ, Xie X, Zhou X, Jiang N, Wang X, et al., ACS Appl. Mater. Interfaces, 9(11), 9756 (2017)