화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.106, 520-536, February, 2022
Electrochemical Ce(III)/Ce(IV) interconversion, electrodeposition, and catalytic CO ↔ CO2 interconversion over terpyridine-modified indium tin oxide electrodes
E-mail:
Indium tin oxide (ITO) has extensively used as an electrode in diverse application areas of electrochemistry, displays, photovoltaics, and catalysts. Herein, terpyridine-modified ITO and thioterpyridinefunctionalized Au-modified ITO electrodes were prepared and evaluated for electrochemical redox behaviors and conversion rates of Ce(III)/Ce(IV) ions, and recycling recovery rates on the newly developed electrode by cyclic voltammetry and amperometry. Scanning electron microscopy, X-ray photoelectron spectroscopy, Ultraviolet photoelectron spectroscopy, X-ray diffraction crystallography, and fluorescence spectroscopy were employed for the physiochemical properties of the demonstrated electrodes before and after electrochemistry. The interfacial energy level was examined by ultraviolet photoelectron spectroscopy for ITO-Au and ITO-Au-STpy. Density functional theory calculations were performed to examine complexation between the functionalized ligand and Ce(III)/Ce(IV) ions by obtaining molecular orbital energy levels and thermodynamics. Thermal CO oxidation catalytic activity was tested for Ceelectrodeposited ITO electrode. In addition, electrochemical CO2 reduction performance was evaluated for Au-modified ITO electrode with and without thioterpyridine-functionalization.
  1. Jeong CH, Jeon KW, Byeon HJ, Choi TY, Kim HM, Jeong DW, J. Indus. Eng. Chem., 100, 149 (2021)
  2. Li Y, Liu HY, Shi LN, Zhu YR, Yi TF, J. Indus. Eng. Chem., 101, 144 (2021)
  3. Wang Q, Li Y, Serrano-Lotina A, Han W, Portela R, Wang R, et al., J. Am. Chem. Soc., 143(1), 196 (2021)
  4. Kong JJ, Xiang ZW, Li GY, An TC, Appl. Catal. B, 269, 118755 (2020)
  5. Xiao Y, Tan S, Wang D, Wu J, Jia T, Liu Q, et al., Appl. Surf. Sci., 530, 147116 (2020)
  6. You R, Li Z, Cao T, Nan B, Si R, Huang W, ACS Appl. Nano Mater., 1, 4988 (2018)
  7. Mori K, Jida H, Kuwahara Y, Yamashita H, Nanoscale, 12, 1779 (2020)
  8. Gao Y, Zhang Z, Li Z, Huang W, Chin. J. Catal, 41(6), 1006 (2020)
  9. Ansari SA, Khan MM, Ansari MO, Kalathil S, Lee J, Cho MH, RSC Adv., 4(32), 16782 (2014)
  10. Zhao S, Kang D, Liu Y, Wen Y, Xie X, Yi H, et al., ACS Catal., 10, 11739 (2020)
  11. He X, Tian F, Chang J, Bai X, Yuan C, Wang C, et al., ACS Sustain. Chem. Eng., 8, 6744 (2020)
  12. Ghosh D, Parwaiz S, Mohanty P, Pradhan D, Dalton Trans., 49(48), 17594 (2020)
  13. Ho PH, Ambrosetti M, Groppi G, Tronconi E, Fornasari G, Vaccari A, et al., Catal. Today, 334, 37 (2019)
  14. C?rdenas-Arenas A, Quindimil A, Davo-Quinonero A, Garc?a EB, Lozano-Castello D, De-La-Torre Y, et al., Appl. Catal. B, 265, 118538 (2020)
  15. Leung PK, de Le?n CP, Low CTJ, Walsh FC, Electrochim. Acta, 56(5), 2145 (2011)
  16. Xie Z, Xiong F, Zhou D, Energy Fuels, 25(5), 2399 (2011)
  17. Xiong F, Zhou D, Xie Z, Chen Y, Appl. Energy, 99, 291 (2012)
  18. Wei Y, Fang B, Arai T, Kumagai M, J. Appl. Electrochem., 35(6), 561 (2005)
  19. Wang Q, Daoud WA, Electrochim. Acta, 315, 1 (2019)
  20. Schmickler W, Nazmutdinov RR, Wang Q, Daoud WA, Electrochim. Acta, 368, 137601 (2021)
  21. Xie Z, Liu B, Xie C, Yang B, Jiao Y, Cai D, et al., Mater. Chem. Phys., 220, 208 (2018)
  22. Choi EY, Jeong SM, Prog. Nat. Sci. Mater. Int., 25, 572 (2015)
  23. Yang DW, Liu YL, Yin TQ, Jiang SL, Zhong YK, Wang L, et al., Electrochim. Acta, 353, 136449 (2020)
  24. Schumacher PD, Doyle JL, Schenk JO, Clark SB, Rev. Anal. Chem., 32, 159 (2013)
  25. Agarwal R, Sharma MK, Inorg. Chem., 57(17), 10984 (2018)
  26. Zhu T, Huang W, Gong Y, Sep. Purif. Technol., 235, 116227 (2020)
  27. Rice NT, Su J, Gompa TP, Russo DR, Telser J, Palatinus L, et al., Inorg. Chem., 58(8), 5289 (2019)
  28. Levin JR, Dorfner WL, Dai AX, Carroll PJ, Schelter EJ, Inorg. Chem., 55(24), 12651 (2016)
  29. Buchanan CA, Ko E, Cira S, Balasubramanian M, Goldsmith BR, Singh N, Inorg. Chem., 59(17), 12552 (2020)
  30. Takasugi S, Miseki Y, Sasaki K, Fujita E, Sayama K, Electrochim. Acta, 307, 369 (2019)
  31. Piro NA, Robinson JR, Walsh PJ, Schelter EJ, Coord. Chem. Rev., 260, 21 (2014)
  32. Agarwal R, Sharma MK, Jayachandran K, Gamare JS, Noronha DM, Lohithakshan KV, Anal. Chem., 90(17), 10187 (2018)
  33. Dares CJ, Lapides AM, Mincher BJ, Meyer TJ, Science, 350(6261), 652 (2015)
  34. Lopez MJ, Sheridan MV, McLachlan JR, Grimes TS, Dares CJ, Chem. Commun., 55(28), 4035 (2019)
  35. Bertelsen ER, Kovach NC, Trewyn BG, Antonio MR, Shafer JC, J. Mater. Chem. C, 8, 6689 (2020)
  36. Park SJ, Joo MH, Hong SM, Kang JG, Rhee CK, Lee SW, et al., Inorg. Chem. Front., 8, 1175 (2021)
  37. Park SJ, Joo MH, Hong SM, Rhee CK, Kang JG, Sohn Y, Chem. Eng. J., 412, 128717 (2021)
  38. Yi JM, Kim TJ, Park SJ, Hong SM, Kang JG, Rhee CK, et al., Chem. Eng. J., 402, 126266 (2020)
  39. Joo MH, Park SJ, Hong SM, Rhee CK, Sohn Y, Mater. Today Commun., 27, 102305 (2021)
  40. Dev S, Sachan A, Dehghani F, Ghosh T, Briggs BR, Aggarwal S, Chem. Eng. J., 397, 124596 (2020)
  41. Cardoso CED, Almeida JC, Lopes CB, Trindade T, Vale C, Pereira E, Nanomaterials, 9, 814 (2019)
  42. Joo MH, Park SJ, Hong SM, Rhee CK, Kim D, Sohn Y, Coatings, 11, 100 (2021)
  43. Joo MH, Park SJ, Hong SM, Rhee CK, Sohn Y, Materials, 13, 5314 (2020)
  44. Park SJ, Joo MH, Yang JH, Hong SM, Rhee CK, Kang JG, et al., ACS Appl. Mater. Interfaces, 13(23), 27594 (2021)
  45. Yang Y, Du X, Yi C, Liu J, Zhu B, Zhang Z, Appl. Surf. Sci., 440, 1073 (2018)
  46. Ge J, Yang Q, Wang Y, Zhuo W, Du M, Zhang J, J. Electrochem. Soc., 167, 22501 (2020)
  47. Jang J, Kim T, Kim GY, Yoon D, Lee S, J. Nucl. Mater, 520, 245 (2019)
  48. Yin T, Liu Y, Yang D, Yan Y, Wang G, Chai Z, et al., J. Electrochem. Soc., 167, 122507 (2020)
  49. Sedigh M, Rostami AA, Alizadeh E, Int. J. Hydrog. Energy, 42(8), 4998 (2017)
  50. Yang Q, Qiao Y, McSkimming A, Moreau LM, Cheisson T, Booth CH, et al., Inorg. Chem. Front., 8, 934 (2021)
  51. Fang YX, Flake JC, J. Am. Chem. Soc., 139, 3399 (2017)
  52. Hong S, Lee S, Kim S, Lee JK, Lee J, Catal. Today, 295, 82 (2017)
  53. Zhang W, He J, Liu S, Niu W, Liu P, Zhao Y, et al., Nanoscale, 10(18), 8372 (2018)
  54. Clark ML, Ge A, Videla PE, Rudshteyn B, Miller CJ, Song J, et al., J. Am. Chem. Soc., 140(50), 17643 (2018)
  55. Cao Z, Zacate SB, Sun X, Liu J, Hale EM, Carson WP, et al., Angew. Chem. Int. Ed., 57(39), 12675 (2018)
  56. M. Cho, J.T. Song, S. Back, Y. Jung, J. Oh, ACS Catal., 8(2), 1178 (2018)
  57. Back S, Yeom MS, Jung Y, J. Phys. Chem. C, 122(8), 4274 (2018)
  58. Todoroki N, Tei H, Tsurumaki H, Miyakawa T, Inoue T, Wadayama T, ACS Catal., 9, 1383 (2019)
  59. Goyal A, Marcandalli G, Mints VA, Koper MTM, J. Am. Chem. Soc., 142(9), 4154 (2020)
  60. Marcandalli G, Goyal A, Koper MTM, ACS Catal., 11(9), 4936 (2021)
  61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Fox DJ, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford, CT (2016).
  62. de Souza KMN, de Carvalho LP, da Silva JAB, Longo RL, Inorg. Chim. Acta, 494, 65 (2019)
  63. Cai LL, Hu YT, Li Y, Wang K, Zhang XQ, Muller G, et al., Inorg. Chim. Acta, 489, 85 (2019)
  64. Lumpe H, Pol A, den Camp HJMO, Daumann LJ, Dalton Trans., 47(31), 10463 (2018)
  65. Qiu B, Wang C, Zhang N, Cai L, Xiong Y, Chai Y, ACS Catal., 9(7), 6484 (2019)
  66. Lee J, Yoo JK, Kim J, Sohn Y, Rhee CK, Electrochim. Acta, 290, 244 (2018)
  67. Ferrari AGM, Foster CW, Kelly PJ, Brownson DAC, Banks CE, Biosensors, 8, 53 (2018)
  68. NIST X-ray Photoelectron Spectroscopy Database, Version 4.1 (National Institute of Standards and Technology, Gaithersburg, 2012); http://srdata. nist.gov/xps/.
  69. Sohn Y, White JM, J. Phys. Chem. C, 112(13), 5006 (2008)
  70. Ha H, Yoon S, An K, Kim HY, ACS Catal., 8(12), 11491 (2018)
  71. Chen S, Zhang B, Su D, Huang W, ChemCatChem, 7(20), 3290 (2015)
  72. Sohn Y, Huang W, Taghipour F, Appl. Surf. Sci., 396, 1696 (2017)
  73. Sohn Y, Stuckless JT, Chem. Phys. Chem., 8(13), 1937