화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.60, No.1, 1-6, February, 2022
Polyaniline을 이용한 CNT fiber 유연 전극 기반의 비효소적 글루코스 검출
Enzyme-Free Glucose Sensing with Polyaniline-Decorated Flexible CNT Fiber Electrode
E-mail:
초록
최근 웨어러블 디바이스에 대한 수요가 증가하면서 유연 전극 소재 개발에 대한 다양한 연구들이 진행되고 있다. 특히, 헬스케어용 웨어러블 센서들은 체온이나 심장 박동, 혈당, 혈중 산소 농도 등 신체 정보들의 실시간지속적인 모니터링과 정확한 진단, 검출이 가능해야 하기 때문에 고성능 유연 전극 소재의 개발이 무엇보다 중요하다. 본 연구에서는 탄소나노튜브 섬유(carbon nanotube fiber; CNT fiber) 기반의 유연 전극 소재의 성능을 개선시키기 위해 CNT fiber 위에 전기화학적 중합(electrochemical polymerization) 공정을 통해 polyaniline (PANI) layer를 합성하고, 이에 대한 전기화학적 특성 분석과 비효소적 글루코스(glucose) 검출 특성을 확인하였다. 제작된 PANI/CNT fiber 전극의 표면 분석은 주사전자 현미경(SEM)을 이용하여 진행되었으며, 전극의 전기화학적 특성 및 글루코스에 대한 센싱 성능은 시간대전류법(CA)과 순환전압 전류법(CV), 전기화학 임피던스법(EIS)을 이용하여 분석되었다. PANI/CNT fiber 전극의 전기화학적 특성은 bare CNT fiber 전극에 비해 작은 electron transfer resistance와 낮은 peak separation potential, 증가된 전극 면적을 나타내며, 이런 향상된 특성들 덕분에 글루코스 검출에 대한 센싱 성능이 개선되었다. 따라서, 본 연구를 기반으로 다양한 나노구조체를 도입하고 접목을 통해 고성능 CNT fiber 기반의 유연 전극 소재 개발이 가능할 것으로 기대된다.
As the demand for wearable devices increases, many studies have been studied on the development of flexible electrode materials recently. In particular, the development of high-performance flexible electrode materials is very important for wearable sensors for healthcare because it is necessary to continuously monitor and accurately detect body information such as body temperature, heart rate, blood glucose, and oxygen concentration in real time. In this study, we fabricated the nonenzymatic glucose sensor based on polyaniline/carbon nanotube fiber (PANI/CNT fiber) electrode. PANI layer was synthesized on the flexible CNT fiber electrode through electrochemical polymerization process in order to improve the performance of a flexible CNT fiber based electrode material. Surface morphology of the PANI/CNT fiber electrode was observed by scanning electron microscopy. And its electrochemical characteristics were investigated by chronoamperometry, cyclic voltammetry, electrochemical impedance spectroscopy. Compared to bare CNT fiber electrode, this PANI/CNT fiber electrode exhibited small electron transfer resistance, low peak separation potential and large surface area, resulting in enhanced sensing properties for glucose such as wide linear range (0.024~0.39 and 1.56~50 mM), high sensitivity (52.91 and 2.24 μA/mM·cm2), low detection limit (2 μM) and good selectivity. Therefore, it is expected that it will be possible to develop high performance CNT fiber based flexible electrode materials using various nanomaterials.
  1. Lee SM, Lee D, Serv. Bus., 14, 503 (2020)
  2. Liu J, Liu M, Bai Y, Zhang J, Liu H, Zhu W, Sensors, 20, 4009 (2020)
  3. Lian Y, Wang M, Yang X, Li Z, Yang F, Wang Y, Tai H, Liao Y, Wu J, Wang X, Jiang Y, Tao G, J. Mater. Chem. C, 8, 8399 (2020)
  4. Singha K, Kumar J, Pandit P, Mater. Today Proc., 16, 1518 (2019)
  5. Hatamie A, Angizi S, Kumar S, Pandey CM, Simchi A, Willander M, Malhotra BD, J. Electrochem. Soc., 167, 037546 (2020)
  6. Chuang MC, Windmiller JR, Santhosh P, Pamirez GV, Galik M, Chou TY, Wang J, Electroanalysis, 22, 2511 (2010)
  7. Oueiny C, Berlioz S, Perrin FX, Prog. Polym. Sci, 39, 707 (2014)
  8. Liu Y, Sun G, Jiang C, Zheng XT, Zheng L, Li CM, Microchim. Acta, 181, 63 (2014)
  9. Di JT, Zhang XH, Yong ZZ, Zhang YY, Li D, Li R, Li QW, Adv. Mater., 28(47), 10529 (2016)
  10. Jung C, Liu W, Hao H, Wang H, Meng F, Lau D, Nanoscale, 12, 16305 (2020)
  11. Cho SY, Yu H, Choi J, Kang H, Park S, Jang JS, Hong HJ, Kim ID, Lee SK, Jeong HS, Jung HT, ACS Nano, 13, 9332 (2019)
  12. Shoaie N, Daneshpour M, Azimzadeh M, et al., Microchim. Acta, 186, 465 (2019)
  13. Misak HE, Asmatulu R, O’Malley M, Jurak E, Mall S, Int. J. Smart Nano Mater., 5, 34 (2014)
  14. Singh B, Bhatia V, Jain VK, Sens. Transducers, 146, 69 (2012)
  15. Jugovic B, Gvozdenovic M, Stevanovic J, Trisovic T, Grgur B, Mater. Chem. Phys., 114(2-3), 939 (2009)
  16. Gvozdenovic MM, Jugovic BZ, Stevanovic JS, Grgur BN, Hem. Ind., 68, 673 (2014)
  17. Torz-Piotrowska R, Wrzyszczynki A, Paprocki K, Szreiber M, Uniszkiewicz C, Staryga E, J. Achiev. Mater. Manuf. Eng., 37, 486 (2009)
  18. Du J, Yue R, Yao Z, Jiang F, Du Y, Yang P, Wang C, Colloids Surf. A: Physicochem. Eng. Asp., 419, 94 (2013)
  19. Song MJ, Korean Chem. Eng. Res., 57(5), 606 (2019)
  20. Wu J, Qu Y, Anal. Bioanal. Chem., 385, 1330 (2006)
  21. Felix S, Chakkravarthy BP, Jeong SK, Grace AN, J. Electrochem. Soc., 162(6), H392 (2015)
  22. Bard AJ, Faulkner LR, Electrochemical Methods, 2nd ed., John Wiley and Sons, New York(1980).
  23. Upadhyay S, Rao GR, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan F, Biosens. Bioelectron., 25, 832 (2009)
  24. Song MJ, Korean Chem. Eng. Res., 59, 606 (2021)
  25. Xu M, Song Y, Ye Y, Gong C, Shen Y, Wang L, Wang L, Sens. Actuators B-Chem., 252, 1187 (2017)
  26. Zhao A, Zhang Z, Zhang P, Xiao S, Wang L, Dong Y, Yuan H, Li P, Sun Y, Jiang X, Xiao F, Anal. Chim. Acta, 938, 63 (2016)
  27. He W, Sun Y, Xi J, Abdurhman AAM, Ren J, Duan H, Anal. Chim. Acta, 903, 61 (2016)
  28. Thirumalai D, Subramani D, Shin B, Park H, Chang SC, Bull. Korean Chem. Soc., 39, 141 (2018)