Korean Chemical Engineering Research, Vol.60, No.1, 12-19, February, 2022
Cathode 개방형 고분자연료전지 스택 내구성 평가
Durability Evaluation of Cathode Open-type Proton Exchange Membrane Fuel Cells Stacks
E-mail:
초록
소형 이송형 고분자전해질 연료전지 (PEMFC)에 많이 사용되는 cathode 개방형 PEMFC 스택은 내구성이 약한 문제점이 있다. 13개의 셀로 이루어진 PEMFC 스택의 가속 내구성 평가를 통해 스택의 열화 원인을 찾고 cathode 개방형 스택의 내구성 향상에 기여하고자 하였다. Cathode가 대기에 개방되어 있고, 기밀 유지가 어려운 cathode 개방형 스택의 구조적 문제점 때문에 시동/정지 (SU/SD)시 수소/공기 경계가 형성되어 cathode를 열화시킨다. 본 연구에서는 cathode 개방형 스택에 SU/SD 1,800회 반복 후 초기 성능의 54%가 감소하여 비교적 짧은 시간에 내구성을 평가할 수 있었다. 스택 해체 후 각 셀을 2등분하여 성능분석하였다. 전체적으로 공기 유입이 용이한 anode 출구부 MEA가 유입부 MEA보다 전극 열화가 더 심해서 SU/SD시 수소/공기 경계 형성이 주요 열화 원인임을 확인했다.
Cathode open-type PEMFC (Proton Exchange Membrane Fuel Cells) stacks, which are widely used in small transport-type PEMFC, have a problem with poor durability. Through the accelerated durability test of the 13-cell PEMFC stack, we tried to find the cause of the degradation of the stack and to contribute to the improvement of the durability of the cathode open stack. A hydrogen/air boundary is formed during start-up/shut-down (SU/SD) due to the structural problem of the cathode open stack in which the cathode is open to the atmosphere and it is difficult to maintain airtightness, thereby deteriorating the cathode. In this study, it was possible to evaluate the durability in a relatively short time by reducing the 54% of the initial performance by repeating SU/SD 1,800 times on the cathode open stack. After dismantling the stack, each cell was divided into two and the performance was analyzed. Overall, the anode outlet MEA, which facilitates air inflow, showed more severe electrode deterioration than the inlet MEA, confirming that the hydrogen/air boundary formation during SU/SD is the main cause of degradation.
- Laconti AB, Mamdan M, McDonald RC, Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
- Peighambardoust SJ, Rowshanzamir S, Amjadi M, Int. J. Hydrog. Energy, 35(17), 9349 (2010)
- Ren P, Pei P, Li Y, Wu Z, Chen D, Huang S, Progress in Energy and Combustion Science, 80, 100859(2020).
- Chen Chen-Yu, Huang Keng-Pin, Yan Wei-Mon, Lai Ming-Ping, Yang Chen-Cheng, Int. J. Hydrog. Energy, 41(27), 11784 (2016)
- Kim B, Lee Y, Woo A, Kim Y, Appl. Energy, 111, 441 (2013)
- Zeng T, Zhang CZ, Huang ZY, Li MX, Chan SW, Li Q, Wu XS, Int. J. Hydrog. Energy, 44(43), 24017 (2019)
- Strahl S, Costa-Castello R, J. Process Control, 47, 201 (2016)
- Strahl S, Gasamans N, Llorca J, Husar A, Int. J. Hydrog. Energy, 39(10), 5378 (2014)
- Silva RA, Hashimoto T, Thompson GE, Rangel CM, Int. J. Hydrog. Energy, 37(8), 7299 (2012)
- Inaba M, Kinumoto T, Kiriake M, Umebayashi R, Tasaka A, Ogumi Z, Electrochimica Acta, 51, 5746 (2006)
- Yu Y, Li H, Wang HJ, Yuan XZ, Wang GJ, Pan M, J. Power Sources, 205, 10 (2012)
- Lim DH, Oh SH, Jung SG, Jeong JH, Park KP, Korean Chem. Eng. Res., 59(1), 16 (2021)
- Taniguchi A, Akita T, Yasuda K, Miyazaki Y, J. Power Sources, 130(1-2), 42 (2004)
- Lim KH, Lee WH, Jeong Y, Kim H, J. Electrochem. Soc., 164(14), F1580 (2017)
- Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)