Korean Chemical Engineering Research, Vol.60, No.1, 25-33, February, 2022
스팀 절감량 예측을 위한 흑액 다중 효용 증발 공정 모델 개발
Development of Black Liquor Multiple-effect-evaporation Process Model to Predict Steam Savings
E-mail:,
초록
본 연구에서는 흑액 증발공정에 소비되는 스팀의 절감량을 예측하기 위해 증발기 수에 따른 다중 효용 증발공정 모델을 개발하였다. 개발한 공정 모델은 흑액의 예열 및 증발 과정으로 구성되어 있고, 스팀 사용량을 예측하기 위해 가상의 재비기가 추가되었다. 시뮬레이션 결과, 2중 효용 증발기에서 스팀 사용량은 48.9% 감소하였고, 증발기 수가 증가함에 따라 스팀 사용량이 감소하여 8중 효용 증발기에서 최대 76.5% 감소함을 확인하였다. 시뮬레이션 결과를 증발기 수에 따른 포화증기의 잠열 회수량, 스팀 사용량, 각 증발기의 포화증기 생산량으로 분석하여 최적의 증발기 수 도출을 위한 방안을 제시하였다.
This study developed the black liquor evaporation process models using the multiple-effect-evaporator according to the number of effects to predict steam consumption. The developed models were divided into the black liquor preheating and evaporation processes, and a virtual reboiler was added to predict steam consumption. In simulation results, the steam consumption in the double-effect-evaporator was decreased by 48.9 %, and as the number of effects increased, the steam consumption was decreased. Finally, the steam consumption in the octuple-effectevaporator was decreased by 61.2 %. Also, this study suggests a strategy for deriving the optimal number of effects in the process by analyzing the latent heat recovered from the saturated vapor produced in the multiple-effect-evaporator and the amount of saturated vapor produced by each effect.
- Kim C, Lee J, Park S, Moon S, J. of Korea TAPPLI, 51(5), 3 (2019).
- Ek M, Gellerstedt G, Henriksson G, Pulp and Paper Chemistry and Technology, 121-149, 429 (2017).
- Maakala V, Jarvinen M, Vuorinen V, Appl. Therm. Eng., 139, 222 (2018)
- Singh R, Heldman D, Introduction to Food Engineering, 5th ed., 1-861(2014).
- Jaishree V, Department of Chemical Engineering National Institute of Technology, Rourkela (2010).
- Verma OP, Mohammed TH, Mangal S, Manik G, Energy, 129, 148 (2017)
- Bhargava R, Khanam S, Mohanty B, Ray AK, J. Compchemeng., 32(12), 3213 (2008)
- Ren W, Master Dissertation, Department of Chemical Engineering and Applied Chemistry University of Toronto (2014).
- Tran H, Vakkilainnen EK, “The Kraft Chemical Recovery Process,” TAPPI Kraft Recovery Course, 1 (2012).
- Choi Y, An N, Moon I, Kim J, Ind. Eng. Chem. Res., 59(40), 18019 (2020)
- Systems C, Duke University Construction & Design Standards, Duke university, 1 (2017).
- Lim JH, Choi YR, Kim GY, Kim JH, Korean J. Chem. Eng., 37(12), 2085 (2020)
- Rowell RM, Handbook of Wood Chemistry and Wood Composites, 2nd ed., CRC Press (2012).
- Lim J, Kim J, J. Korea Soc. Waste Manag., 37(4), 263 (2020)
- Choi Y, Kim J, Moon I, Energy, 194(2020).
- Gebreyohannes S, Neely BJ, Gasem KAM, Ind. Eng. Chem. Res., 53(31), 12445 (2014)
- Joo H, Hwang I, Kwak H, J Korean Sol. Energy Soc., 31(1), 1 (2011)
- Jeong YS, Jung J, Lee U, Yang C, Han C, Chem. Eng. Res. Des., 104, 247 (2015)