화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.60, No.1, 25-33, February, 2022
스팀 절감량 예측을 위한 흑액 다중 효용 증발 공정 모델 개발
Development of Black Liquor Multiple-effect-evaporation Process Model to Predict Steam Savings
E-mail:,
초록
본 연구에서는 흑액 증발공정에 소비되는 스팀의 절감량을 예측하기 위해 증발기 수에 따른 다중 효용 증발공정 모델을 개발하였다. 개발한 공정 모델은 흑액의 예열 및 증발 과정으로 구성되어 있고, 스팀 사용량을 예측하기 위해 가상의 재비기가 추가되었다. 시뮬레이션 결과, 2중 효용 증발기에서 스팀 사용량은 48.9% 감소하였고, 증발기 수가 증가함에 따라 스팀 사용량이 감소하여 8중 효용 증발기에서 최대 76.5% 감소함을 확인하였다. 시뮬레이션 결과를 증발기 수에 따른 포화증기의 잠열 회수량, 스팀 사용량, 각 증발기의 포화증기 생산량으로 분석하여 최적의 증발기 수 도출을 위한 방안을 제시하였다.
This study developed the black liquor evaporation process models using the multiple-effect-evaporator according to the number of effects to predict steam consumption. The developed models were divided into the black liquor preheating and evaporation processes, and a virtual reboiler was added to predict steam consumption. In simulation results, the steam consumption in the double-effect-evaporator was decreased by 48.9 %, and as the number of effects increased, the steam consumption was decreased. Finally, the steam consumption in the octuple-effectevaporator was decreased by 61.2 %. Also, this study suggests a strategy for deriving the optimal number of effects in the process by analyzing the latent heat recovered from the saturated vapor produced in the multiple-effect-evaporator and the amount of saturated vapor produced by each effect.
  1. Kim C, Lee J, Park S, Moon S, J. of Korea TAPPLI, 51(5), 3 (2019).
  2. Ek M, Gellerstedt G, Henriksson G, Pulp and Paper Chemistry and Technology, 121-149, 429 (2017).
  3. Maakala V, Jarvinen M, Vuorinen V, Appl. Therm. Eng., 139, 222 (2018)
  4. Singh R, Heldman D, Introduction to Food Engineering, 5th ed., 1-861(2014).
  5. Jaishree V, Department of Chemical Engineering National Institute of Technology, Rourkela (2010).
  6. Verma OP, Mohammed TH, Mangal S, Manik G, Energy, 129, 148 (2017)
  7. Bhargava R, Khanam S, Mohanty B, Ray AK, J. Compchemeng., 32(12), 3213 (2008)
  8. Ren W, Master Dissertation, Department of Chemical Engineering and Applied Chemistry University of Toronto (2014).
  9. Tran H, Vakkilainnen EK, “The Kraft Chemical Recovery Process,” TAPPI Kraft Recovery Course, 1 (2012).
  10. Choi Y, An N, Moon I, Kim J, Ind. Eng. Chem. Res., 59(40), 18019 (2020)
  11. Systems C, Duke University Construction & Design Standards, Duke university, 1 (2017).
  12. Lim JH, Choi YR, Kim GY, Kim JH, Korean J. Chem. Eng., 37(12), 2085 (2020)
  13. Rowell RM, Handbook of Wood Chemistry and Wood Composites, 2nd ed., CRC Press (2012).
  14. Lim J, Kim J, J. Korea Soc. Waste Manag., 37(4), 263 (2020)
  15. Choi Y, Kim J, Moon I, Energy, 194(2020).
  16. Gebreyohannes S, Neely BJ, Gasem KAM, Ind. Eng. Chem. Res., 53(31), 12445 (2014)
  17. Joo H, Hwang I, Kwak H, J Korean Sol. Energy Soc., 31(1), 1 (2011)
  18. Jeong YS, Jung J, Lee U, Yang C, Han C, Chem. Eng. Res. Des., 104, 247 (2015)