Korean Journal of Materials Research, Vol.32, No.1, 44-50, January, 2022
방전플라즈마 소결 공정 적용 전이금속 카바이드 서멧의 소결 및 기계적 특성
Sintering Behavior and Mechanical Property of Transition Metal Carbide-Based Cermets by Spark Plasma Sintering
E-mail:
Transition metal carbides (TMCs) are used to process difficult-to-cut materials due to the trend of requiring superior wear and corrosion properties compared to those of cemented carbides used in the cutting industry. In this study, TMC (TiC, TaC, Mo2C, and NbC)-based cermets were consolidated by spark plasma sintering at 1,300 °C (60 °Cmin) with a pressure of 60 MPa with Co addition. The sintering behavior of TMCs depended exponentially on the function of the sintering exponent. The Mo2C-6Co cermet was fully densified, with a relative density of 100.0 %. The Co-binder penetrated the hard phase (carbides) by dissolving and re-precipitating, which completely densified the material. The mechanical properties of the TMCs were determined according to their grain size and elastic modulus: TiC-6Co showed the highest hardness of 1,872.9 MPa, while NbC-6Co showed the highest fracture toughness of 10.6 MPa*m1/2. The strengthened grain boundaries due to high interfacial energy could cause a high elastic modules; therefore, TiC-6Co showed a value of 452 ± 12 GPa.
- Ezugwu EO, Lim SK, Lubric. Eng., 51, 139 (1995)
- Jabor M, Radh NS, Al-Kinani MA, Al-Khafaji ZS, J. Mech. Eng. Res., 44, 30 (2021)
- Lee JH, Oh IH, Jang JH, Kim JH, Hong SK, Park HK, Met. Mater. Int., 27, 456 (2021)
- Lee JH, Park HK, Korean J. Mater. Res., 31(7), 397 (2021)
- Chen M, Zhang X, Xiao X, Zhao H, Mater. Res. Express, 8, 076501 (2021)
- Cao Z, Jin N, Ye J, Zhuang D, Liu Y, Int. J. Refract. Met. Hard Mater., 99, 105605 (2021)
- Lee JH, Park HK, Jang JH, Hong SK, Oh IH, Korean J. Met. Mater., 55, 783 (2017)
- Shin SG, Korean J. Mater. Res., 24(10), 526 (2014)
- Ahn DG, Korean J. Mater. Res., 10(12), 838 (2000)
- Park HK, Oh IH, Kim JH, Hong SK, Lee JH, Arch. Metall. Mater., 66, 997 (2021)
- Lee ES, Byun JM, Jeong YK, Oh ST, Korean J. Mater. Res., 30(6), 321 (2020)
- Kang HJ, Kim HJ, Han JY, Lee YJ, Jeong YK, Oh ST, Korean J. Mater. Res., 28(9), 511 (2018)
- Yang CJ, Mater. Res. Express, 7, 016508 (2020)
- Ashby MF, Acta Metall., 22, 275 (1974)
- Zhang FL, Wang CY, Zhu M, Scr. Mater., 49, 1123 (2003)
- Flipon B, Grand V, Murgas B, Gaillac A, Nicolay A, Bozzolo N, Bernacki M, Mater. Charact., 174, 110977 (2021)
- Pharr GM, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 253, 153 (1998)
- Oguntuyi SD Johnson OT, Shongwe MB, Int. J. Adv. Manufact. Technol., 116, 69 (2021)
- Lee JH, Oh IH, Park HK, Arch. Metall. Mater., 66, 1029 (2021)
- Schubert WD, Bock A, Lux B, Int. Refract. Met. Hard Mater., 13, 281 (1995)
- Coble RL, J. Am. Ceram. Soc., 41, 55 (1958)
- Cha SI, Hong SH, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 356, 381 (2003)
- Kim S, Cae JM, KanG S, Ryu SS, Kim HT, J. Korean Powder Metall. Inst., 15, 503 (2008)
- Park P, Lee HJ, Jo Y, Gu B, Choi WJ, Byun J, J. Korean Powder Metall. Inst., 26, 515 (2019)
- Lee CH, Lu HH, Wang CA, Nayak PK, Huang JL, J. Am. Ceram. Soc., 94(4), 1182 (2011)
- Wan W, Xiong J, Liang M, Ceram. Int., 43, 944 (2017)
- Moreira AB, Ribeiro LMM, Vieira MF, Materials, 14, 5072 (2021)
- Yang H, Yue X, Wang Z, Shao Y, Shu S, J. Mater. Res. Technol., 9, 6475 (2020)
- Snowball RF, Milner DR, Powder Metall., 11, 23 (1968)