화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.3, 504-514, March, 2022
Incipient fault diagnosis for centrifugal chillers using kernel entropycomponent analysis and voting based extreme learning machine
E-mail:
Incipient fault detection and diagnosis for centrifugal chillers is significant for maintaining safe and effective system operation. Due to the advantages of simple learning algorithm and high generalization capability, the extreme learning machine (ELM) can identify faults quickly and precisely in comparison to conventional classification methods such as back propagation neural network (BPNN). This paper reports an effective diagnosis method for incipient chiller faults with the integration of kernel entropy component analysis (KECA) and voting based ELM (VELM). KECA was first performed to reduce the dimensionality of the original input data so as to minimize the model complexity and computational cost. Instead of using a single ELM, multiple independent ELMs were adopted in VELM, and then the class label could be predicted based on the majority voting method. Using the experimental data of seven typical faults together with a normal operation, the proposed KECA-VELM fault diagnostic model was trained and further validated. The results show that a better fault diagnosis performance can be achieved using the KECA-VELM classifier compared with the conventional BPNN, ELM and VELM based classifiers. The overall average fault diagnosis accuracy for the faults at the least severity level was reported over 95% based on the proposed method.
  1. IEA, The Future of Cooling in China, International Energy Agency (2019).
  2. IEA, The Future of Cooling, International Energy Agency (2018).
  3. Comstock MC, Development of analysis tools for the evaluation of fault detection and diagnostics in chillers, Purdue University (1999).
  4. Katipamula S, Brambley MR, HVAC&R Research, 11(2), 169 (2005)
  5. Katipamula S, Brambley MR, HVAC&R Research, 11(1), 3 (2005)
  6. Shin Y, Karng SW, Kim SY, Int. J. Refrig., 40, 152 (2014)
  7. Sun L, Wu J, Jia H, Liu X, Chin. J. Chem. Eng., 25(12), 1812 (2017)
  8. Fan C, Yan D, Xiao F, Li A, An J, Kang X, Build. Simul.- China, 14(1), 3 (2021)
  9. Han H, Cao ZK, Gu B, Ren N, HVAC&R Research, 16(3), 295 (2010)
  10. Guo Y, Tan Z, Chen H, Li G, Wang J, Huang R, Liu J, Ahmad T, Appl. Energy, 225, 732 (2018)
  11. Guo Y, Li G, Chen H, Wang J, Guo M, Sun S, Hu W, Appl. Therm. Eng., 125, 1402 (2017)
  12. Li S, Wen J, Energ. Buildings, 68, 63 (2014)
  13. Lee KP, Wu BH, Peng SL, Build. Environ., 157, 24 (2019)
  14. Zhao Y, Wang SW, Xiao F, Appl. Energy, 112, 1041 (2013)
  15. Li GN, Hu YP, Chen HX, Shen LM, Li HR, Hu M, Liu J, Sun K, Energ. Buildings, 116, 104 (2016)
  16. Wang ZW, Wang L, Liang KF, Tan YY, Appl. Therm. Eng., 141, 898 (2018)
  17. Z. Du, X. Jin and Y. Yang, Appl. Energy, 86(9), 1624 (2009)
  18. Du Z, Fan B, Jin X, Chi J, Build. Environ., 73, 1 (2014)
  19. Chang CC, Lin CJ, ACM Trans. Intell. Syst. Technol., 2(3), 1 (2011)
  20. Liang J, Du R, Int. J. Refrig., 30(6), 1104 (2007)
  21. Han H, Gu B, Kang J, Li ZR, Appl. Therm. Eng., 31(4), 582 (2011)
  22. Yan K, Shen W, Mulumba T, Afshari A, Energ. Buildings, 81, 287 (2014)
  23. Huang R, Liu J, Chen H, Li Z, Liu J, Li G, Guo Y, Wang J, Appl. Therm. Eng., 136, 633 (2018)
  24. Huang GB, Zhu QY, Siew CK, Neurocomputing, 70(1), 489 (2006)
  25. Huang G, Zhou H, Ding X, Zhang R, IEEE T. Syst. Man Cy. B, 42(2), 513 (2012)
  26. Zong W, Huang GB, Neurocomputing, 74(16), 2541 (2011)
  27. Mohammed AA, Minhas R, Hu QJ, Sid-Ahmed MA, Pattern Recogn., 44(10), 2588 (2011)
  28. Xu Y, Dai Y, Dong ZY, Zhang R, Meng K, Neural Comput. Appl., 22(3), 501 (2013)
  29. Zhang M, Liu X, Zhang Z, Chin. J. Chem. Eng., 24(8), 1013 (2016)
  30. Haidong S, Hongkai J, Xingqiu L, Shuaipeng W, Knowl. Based Syst., 140, 1 (2018)
  31. Chen Z, Wu L, Cheng S, Lin P, Wu Y, Lin W, Appl. Energy, 204, 912 (2017)
  32. Cao J, Lin Z, Huang GB, Liu N, Inf. Sci., 185(1), 66 (2012)
  33. Chen Y, Lan L, Energ. Buildings, 41(8), 881 (2009)
  34. Du ZM, Jin XQ, Wu LZ, Build. Environ., 42(9), 3221 (2007)
  35. Yu X, Wu J, Gao J, CIESC J., 71(7), 3151 (2020)
  36. Jenssen R, IEEE Trans. Pattern Anal. Mach. Intell., 32(5), 847 (2010)
  37. Xia Y, Ding Q, Li Z, Jiang A, Build. Simul.- China, 14(1), 53 (2021)
  38. Bai L, Han Z, Ren J, Qin X, Appl. Soft Comput., 92, 106245 (2020)
  39. R?nyi A, On measures of entropy and information, In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. The Regents of the University of California (1961).
  40. Parzen E, Ann. Math. Statis, 33(3), 1065 (1962)
  41. Jenssen R, Eltoft T, Girolami M, Erdogmus D, Kernel maximum entropy data transformation and an enhanced spectral clustering algorithm, in Conference on Advances in Neural Information Processing Systems (2006).
  42. Serre D, Matrices: Theory and applications, Second edition, New York, Springer (2010).