화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.3, 684-694, March, 2022
Cellulose-type binder enabling CuCl2 supported on nanoporous bayeriteto have high CO adsorption ability via reduction of Cu2+ to Cu+
E-mail:,
Previously, we developed a powder-form nanoporous CO-selective adsorbent synthesized via thermal monolayer dispersion of CuCl on bayerite, showing high CO adsorption capacity (48.5 cm3g-1) and a high CO/CO2 selectivity (12.4). For its industrial applications, it is necessary to pelletize it, avoiding pressure-drop problems. Here, we demonstrate a facile three-step method of pelletizing a CuCl/bayerite: 1) physical mixing of CuCl, methyl-cellulose, inorganic-binder, and bayerite, 2) pelletizing, and 3) thermal treatment at 573 K under vacuum. The pelletized adsorbent shows high CO adsorption capacity (42 cm3g-1), CO/CO2 selectivity (12), and commercial-level mechanical strength (1.3 kgf). Notably, the added methyl-cellulose binder has reducing role that maintains the initial CO adsorption capacity for 100 days’ exposure to humid air-condition, although CuCl-based adsorbent easily lost CO adsorption ability owing to oxidation of Cu+ to Cu2+. CuCl2, showing no specific interaction with CO, was converted to Cu+ by the methyl-cellulose. Thus, adsorbent prepared using CuCl2 instead of CuCl with the methyl-cellulose also showed high CO adsorption capacity (31.6 cm3 g-1) and maintained the initial capacity after seven days’ exposure. The reducing role of the methyl-cellulose binder allows inexpensive and feasible synthesis of the CO-adsorbent using CuCl2 that can be easily dispersed on bayerite, without additional reduction treatment.
  1. Mahajan S, Jagtap S, Mater. Today, 18, 100483 (2020)
  2. ding Y, Alpay E, Chem. Eng. Sci., 55, 3929 (2000)
  3. Slagtern A, Olsbye U, Appl. Catal., 110, 99 (1994)
  4. Bhat SA, Sadhukhan J, AIChE J., 55, 408 (2009)
  5. Hou SS, Chen CH, Chang CY, Wu CW, Ou JJ, Lin TH, Energy Convers. Manage., 52, 2758 (2011)
  6. Zarca G, Ortiz I, Urtiaga A, J. Membr. Sci., 438, 38 (2013)
  7. Wang Y, Li C, Meng F, Lv S, Guo J, Liu X, Wang C, Ma Z, Chem. Sci. Eng., 8, 340 (2014)
  8. Dutta N, Patil G, Sep. Purif., 9, 277 (1995)
  9. Tamon H, Kitamura K, Okazaki M, AIChE J., 42, 422 (1996)
  10. Patil G, Baruah S, Dutta N, Gas Sep. Purif., 5, 2 (1991)
  11. Soave GS, Gamba S, Pellegrini LA, Ind. Eng. Chem. Res., 45, 5761 (2006)
  12. Kasuya F, Tsuji T, Gas Sep. Purif., 5, 242 (1991)
  13. Xue C, Hao W, Cheng W, Ma J, Li R, Chem. Eng. J., 375, 122049 (2019)
  14. Peng J, Xian S, Xiao J, Huang Y, Xia Q, Wang H, Li Z, Chem. Eng. J., 270, 282 (2015)
  15. Khan NA, Jhung SH, J. Hazard. Mater., 325, 198 (2017)
  16. Yoon JW, Yoon TU, Kim EJ, Kim AR, Jung TS, Han SS, Bae YS, J. Hazard. Mater., 341, 321 (2018)
  17. Le VN, Vo TK, Lee JH, Kim JC, Kim TH, Oh KH, Bae YS, Kwak SK, Kim J, Chem. Eng. J., 404, 126492 (2021)
  18. Yoon TU, Kim MJ, Kim AR, Kang JH, Ji D, Bae YS, J. Ind. Eng. Chem., 87, 102 (2020)
  19. Vo TK, Bae YS, Chang BJ, Moon SY, Kim JH, Kim J, Micropor. Mesopor. Mater., 274, 17 (2019)
  20. Xie Y, Zhang J, Qiu J, Tong X, Fu J, Yang G, Yan H, Tang Y, Adsorption, 3, 27 (1997)
  21. Cho K, Kim J, Beum HT, Jung T, Han SS, J. Hazard. Mater., 344, 857 (2018)
  22. Cho K, Kim J, Park JH, Jung T, Beum HT, Cho DW, Rhee YW, Han SS, Micropor. Mesopor. Mater., 277, 124 (2019)
  23. Saha D, Deng S, J. Chem. Eng. Data, 54, 2245 (2009)
  24. Hirai H, Wada K, Komiyama M, Bull. Chem. Soc. Jpn., 59, 2217 (1986)
  25. Gallaba DH, Villarroel-Rocha J, Sapag K, Migone AD, Micropor. Mesopor. Mater., 265, 227 (2018)
  26. Wang Y, Yang RT, Heinzel JM, Chem. Eng. Sci., 63, 356 (2008)
  27. Huang Y, Tao Y, He L, Duan Y, Xiao J, Li Z, Adsorption, 21, 373 (2015)
  28. Wang Y, Lin Y, J. Sol-Gel Sci. Technol., 11, 185 (1998)
  29. Yin Y, Tan P, Liu XQ, Zhu J, Sun LB, J. Mater. Chem. A, 2, 3399 (2014)
  30. Hadjiivanov K, Kn?zinger H, Phys. Chem. Chem. Phys., 3, 1132 (2001)
  31. Huang KH, J. Mol. Catal., 64, 85 (1991)
  32. Hadjiivanov KI, Kantcheva MM, Klissurski DG, J. Chem., 92, 4595 (1996)
  33. Jin M, Kim SS, Kim YD, Park JN, Kim JH, Ko CH, Kim JN, Kim JM, J. Mater., 1, 6653 (2013)
  34. Xue J, Ceylan S, Goldfarb JL, Thermochim. Acta, 618, 36 (2015)
  35. Akram M, Taha I, Ghobashy MM, Cellulose, 23, 1713 (2016)
  36. Aggarwal P, Dollimore D, Talanta, 43, 1527 (1996)
  37. Wu Z, Wang S, Zhao J, Chen L, Meng H, Fuel, 171, 65 (2016)
  38. Wooten JB, Seeman JI, Hajaligol MR, Energy Fuels, 18, 1 (2004)
  39. Mok WSL, Antal MJ, Thermochim. Acta, 68, 165 (1983)
  40. Collard FX, Blin J, Renewable Sustainable Energy Rev., 38, 594 (2014)
  41. Zhang C, Chao L, Zhang Z, Zhang L, Li Q, Fan H, Zhang S, Liu Q, Qiao Y, Tian Y, Wang Y, Hu X, Renewable Sustainable Energy Rev., 135, 110416 (2021)
  42. Xin S, Yang H, Chen Y, Yang M, Chen L, Wang X, Chen H, J. Anal. Appl. Pyrolysis, 116, 263 (2015)
  43. Yang Z, Liu X, Yang Z, Zhuang G, Bai Z, Zhang H, Guo Y, J. Anal. Appl. Pyrolysis, 102, 83 (2013)
  44. Yang H, Yan R, Chen H, Lee DH, Zheng C, Fuel, 86, 1781 (2007)
  45. Yang X, Zhao Y, Li R, Wu Y, Yang M, Thermochim. Acta, 665, 20 (2018)
  46. Wu Y, Chen Z, Li B, Xing J, Liu H, Tong Y, Tian P, Xu Y, Liu Z, J. Energy, 36, 122 (2019)
  47. Gao F, Wang Y, S. Chem. Eng. J., 290, 418 (2016)
  48. Kim AR, Yoon TU, Kim SI, Cho K, Han SS, Bae YS, Chem. Eng. J., 348, 135 (2018)
  49. Xue C, Hao W, Cheng W, Ma J, Li R, Materials, 12, 1605 (2019)
  50. Jim?nez JA, J. Alloys Compd., 656, 685 (2016)
  51. Klupfel L, Keiluweit M, Kleber M, Sander M, Environ. Sci. Technol., 48, 5601 (2014)
  52. Hwang EH, Seong HG, Kim SJ, Korean J. Met. Mater., 56, 570 (2018)