화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.3, 717-723, March, 2022
Enhancement of supercritical carbon dioxide solubility modelsusing molecular simulation data
E-mail:,
Supercritical carbon dioxide (SC-CO2) has been used in a broad range of industrial applications due to its unique properties, which underlines the importance of understanding its exact behavior under different operating conditions. In this study, the solubility parameter (SP) of SC-CO2 was calculated using molecular dynamics simulation at varying temperature and pressure and different concentrations of methanol as a co-solvent. The obtained simulation results were used to create a model for solubility parameter using response surface methodology (RSM). These data were then used to improve three available empirical correlations of SC-CO2’s solubility parameter. The resulting equations were vastly superior in predicting the solubility parameter with an average coefficient of determination of 96.33%.
  1. Du Y, Zhang H, Li X, Zhang Y, Yuan S, Energy Fuels, 34, 3483 (2020)
  2. Tarabasz K, Krzysztoforski J, Szwast M, Henczka M, Mater. Lett., 163, 54 (2016)
  3. Ougiyanagi J, Meguro Y, Yoshida Z, Imura H, Ohashi K, Talanta, 59, 1189 (2003)
  4. Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM, J. Food Eng., 95, 240 (2009)
  5. Hildebrand JH, Wood SE, J. Chem. Phys., 1, 817 (1933)
  6. Hildebrand JH, J. Soc. Chem. Indus., 55, 665 (1936)
  7. Hui L, Rui W, Weiyu F, Zhaomin L, Tao M, Guozhi N, Acta Petrolei Sinica, 31, 78 (2015)
  8. Marcus Y, ACS Omega, 3, 524 (2018)
  9. Zhang M, Dou M, Wang M, Yu Y, J. Mol. Liq., 248, 322 (2017)
  10. Marcus Y, J. Supercrit. Fluids, 38, 7 (2006)
  11. Marcus Y, J. Solution Chem., 48, 1025 (2019)
  12. Barton AFM, Chem. Rev., 75, 731 (1975)
  13. Hildebrand J, Scott RL, The solubility of nonelectrolytes, Reinhold Publication Corp. New York (1950).
  14. Hansen CM, The three dimensional solubility parameter and solvent diffusion coefficient, Danish Technical Press, Copenhagen (1967).
  15. Giddings JC, Myers MN, McLaren L, Keller RA, Science,, 162, 67 (1968)
  16. Panayiotou C, Fluid Phase Equilib., 131, 21 (1997)
  17. Moradi H, Azizpour H, Bahmanyar H, Mohammadi N, Akbari M, Heliyon, 6, 5385 (2020)
  18. Moradi H, Azizpour H, Bahmanyar H, Mohammadi M, Inorg. Chem. Commun., 118, 108048 (2020)
  19. Jafari L, Moradi H, Tavan Y, Chem. Pap., 74, 651 (2020)
  20. Emamian M, Azizpour H, Moradi H, Keynejad K, Bahmanyar H, Nasrollahi Z, Chem. Prod. Process Model. (2021).
  21. Moradi H, Azizpour H, Bahmanyar H, Rezamandi N, Zahedi P, Chem. Eng. Technol., 44, (2021).
  22. Cheng X, Feng C, Wang Y, Wang L, Chem. Online, 10, (2000).
  23. Tong Y, Li H, Zhai S, Wang K, An Q, J. Chem. Thermodyn.,, 141, 105952 (2020)
  24. Shahamat M, Rey AD, Polym. J., 54, 4997 (2013)
  25. Dobbs JM, Wong JM, Lahiere RJ, Johnston KP, Ind. Eng. Chem. Res., 26, 56 (1987)
  26. Ting SST, Macnaughton SJ, Tomasko DL, Foster NR, Ind. Eng. Chem. Res., 32, 1471 (1993)