화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.3, 736-759, March, 2022
Study of rice husk ash derived MCM-41-type materials on pore expansion,Al incorporation, PEI impregnation, and CO2 adsorption
E-mail:
Conventional MCM-41 (M41), silica-pure pore-expanded MCM-41 (PM41), and Al-containing poreexpanded MCM-41 (PM41Ax) were synthesized from rice husk ash and tested as polyethyleneimine (PEI) supports for CO2 capture. Samples were characterized by small-angle X-ray diffraction, X-ray fluorescence spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, granulometric analysis, and nitrogen adsorption techniques. The PEI loading rate and CO2 adsorption-desorption performance were determined via thermogravimetric analysis. The effects of pore expansion, heteroatom Al incorporation, PEI loading rate, and Si/Al ratio on CO2 adsorption performance were examined. For the first time, the amount of PEI impregnated in PM41 was increased beyond 55 wt%, and the low-Si/Al-ratio PM41Ax support was used to load PEI in a novel procedure. Results show that at the same PEI loading rate, PM41 is always superior to M41 regarding adsorption capacity and adsorption rate. For a PEI loading rate >50 wt%, the superiority is amplified, reaching 15.9% and 21.3%, respectively. The use of the high-Al-containing PM41Ax support further increases adsorption capacity and adsorption rate by 13.4% and 9.6%, respectively. The presented reaction has a hybrid adsorption characteristic that includes both chemisorption and physisorption. Avrami’s fractional-order kinetic model describes the adsorption best. Over the entire time scale, the adsorption rate is determined by several kinetic diffusion-controlled processes. The intraparticle diffusion and equilibrium adsorption are two predominant rate-limiting steps, and their control ranges change with temperature. After five cycles of adsorption and desorption, the desorption ratio was as high as 99%, and the working capacity still retained 96.5% of the original capacity. In addition, the presence of water vapor increased the adsorption capacity of the adsorbents presented in this study. These advantages make them successful iin capturing CO2 in the post-combustion scenario.
  1. MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams CKI, Shah N, Fennell P, Energy Environ. Sci., 3, 1645 (2010)
  2. Wang J, Huang L, Yang R, Zhang Z, Wu J, Gao Y, Wang Q, O'Hare D, Zhong Z, Energy Environ. Sci., 7, 3478 (2014)
  3. Przepi?rski J, Skrodzewicz M, Morawski AW, Appl. Surf. Sci., 225, 235 (2004)
  4. Wang Y, Du T, Song Y, Che S, Fang X, Zhou L, Solid State Sci., 73, 27 (2017)
  5. Wang Y, Du T, Qiu Z, Song Y, Che S, Fang X, Mater. Chem. Phys., 207, 105 (2018)
  6. Wang Y, Du T, Jia H, Qiu Z, Song Y, Solid State Sci., 86, 24 (2018)
  7. Sayari A, Belmabkhout Y, Serna-Guerrero R, Chem. Eng. J., 171, 760 (2011)
  8. Yan Q, Lin Y, Kong C, Chen L, Chem Commun, 49, 6873 (2013)
  9. Liu F, Chen S, Gao Y, Xie Y, J. Appl. Polym. Sci., 134, 45046 (2017)
  10. Elkhalifah AEI, Maitra S, Bustam MA, Murugesan T, Appl. Clay Sci., 83-84, 391 (2013)
  11. Ma L, Bai R, Hu G, Chen R, Hu X, Dai W, Dacosta HFM, Fan M, Energy Fuels, 27, 5433 (2013)
  12. Zhao X, Hu X, Hu G, Bai R, Dai W, Fan M, Luo M, J. Mater. Chem. A, 1, 6208 (2013)
  13. Zhou Z, Anderson CM, Butler SK, Thompson SK, Whitty KJ, Shen TC, Stowers KJ, J. Mater. Chem. A, 5, 10486 (2017)
  14. Das S, Maity A, Pradhan M, Jana S, Anal. Chem., 88, 2205 (2016)
  15. Leal O, Bol?var C, Ovalles C, Garc?a JJ, Espidel Y, Inorg. Chim. Acta, 240, 183 (1995)
  16. Huang HY, Yang RT, Chinn D, Munson CL, Ind. Eng. Chem. Res., 42, 2427 (2003)
  17. Attard GS, Glyde JC, G?ltner CG, Nature, 378, 366 (1995)
  18. Wang X, Chen L, Guo Q, Chem. Eng. J., 260, 573 (2015)
  19. Mukherjee S, Akshay, Samanta AN, Adv. Powder Technol., 30, 3231 (2019)
  20. dos Santos TC, Bourrelly S, Llewellyn PL, Carneiro JW, Ronconi CM, Phys. Chem. Chem. Phys., 17, 11095 (2015)
  21. Ahmed S, Ramli A, Yusup S, Int. J. Greenhouse Gas Control, 51, 230 (2016)
  22. Belmabkhout Y, Sayari A, Adsorption, 15, 318 (2009)
  23. Serna-Guerrero R, Sayari A, Chem. Eng. J., 161, 182 (2010)
  24. Harlick PJE, Sayari A, Ind. Eng. Chem. Res., 46, 446 (2007)
  25. Harlick PJE, Sayari A, Ind. Eng. Chem. Res., 45, 3248 (2006)
  26. Serna-Guerrero R, Belmabkhout Y, Sayari A, Chem. Eng. J., 158, 513 (2010)
  27. Xu X, Song C, Andresen JM, Miller BG, Scaroni AW, Energy Fuels, 16, 1463 (2002)
  28. Rao N, Wang M, Shang Z, Hou Y, Fan G, Li J, Energy Fuels, 32, 670 (2018)
  29. Wang X, Zeng W, Song M, Wang F, Hu X, Guo Q, Liu Y, Chem. Eng. J., 364, 475 (2019)
  30. Chen C, Xu H, Jiang Q, Lin Z, Energy, 214, 119093 (2021)
  31. Yıldız MG, Davran-Candan T, Günay ME, Yıldırım R, J. CO2 Utilization, 31, 27 (2019)
  32. Franchi RS, Harlick PJE, Sayari A, Ind. Eng. Chem. Res., 44, 8007 (2005)
  33. Heydari-Gorji A, Belmabkhout Y, Sayari A, Langmuir, 27, 12411 (2011)
  34. Xu X, Song C, Andr?sen JM, Miller BG, Scaroni AW, Micropor. Mesopor. Mater., 62, 29 (2003)
  35. Gomes VG, Yee KWK, J. Sep. Purif. Technol., 28, 161 (2002)
  36. M?rel J, Clausse M, Meunier F, J. Environ. Prog. Sustain. Energy, 25, 327 (2010)
  37. Riboldi L, Bolland O, Int. J. Greenhouse Gas Control, 39, 1 (2015)
  38. Raganati F, Chirone R, Ammendola P, Ind. Eng. Chem. Res., 59, 3593 (2020)
  39. Raganati F, Alfe M, Gargiulo V, Chirone R, Ammendola P, Chem. Eng. J., 372, 526 (2019)
  40. Glotov A, Vutolkina A, Pimerzin A, Nedolivko V, Zasypalov G, Stytsenko V, Karakhanov E, Vinokurov V, Catalysts, 10, 537 (2020)
  41. Kang F, Wang Q, Xiang S, Mater. Lett., 59, 1426 (2005)
  42. Wang G, Wang Y, Liu Y, Liu Z, Guo Y, Liu G, Yang Z, Xu M, Wang L, Appl. Clay Sci., 44, 185 (2009)
  43. Du C, Yang H, J. Colloid Interface Sci., 369, 216 (2012)
  44. Zhou C, Sun T, Gao Q, Alshameri A, Zhu P, Wang H, Qiu X, Ma Y, Yan C, J. Taiwan Inst. Chem. Engineers, 45, 1073 (2014)
  45. Miao S, Liu Z, Ma H, Han B, Du J, Sun Z, Miao Z, Micropor. Mesopor. Mater., 83, 277 (2005)
  46. Yang H, Deng Y, Du C, Jin S, Appl. Clay Sci., 47, 351 (2010)
  47. Jin J, Ouyang J, Yang HM, Appl. Clay Sci., 99, 246 (2014)
  48. Panek R, Wdowin M, Franus W, Czarna D, Stevens LA, Deng H, Liu J, Sun C, Liu H, Snape CE, J. CO2 Utilization, 22, 81 (2017)
  49. Li CC, Qiao XC, Yu JG, Mater. Lett., 167, 246 (2016)
  50. Hong GB, Ruan RT, Chang CT, Chem. Eng. J., 215-216, 472 (2013)
  51. Lin LY, Bai H, Environ. Sci. Technol., 47, 4636 (2013)
  52. Liou TH, Chem. Eng. J., 171, 1458 (2011)
  53. Liu J, Wei X, Xue J, Su H, Mater. Chem. Phys., 241, 122355 (2020)
  54. Ma Y, Chen H, Shi Y, Yuan S, Mater. Res. Bull., 77, 258 (2016)
  55. Chiarakorn S, Areerob T, Grisdanurak N, Sci. Technol. Adv. Mater., 8, 110 (2007)
  56. Ziaei-Azad H, Kolle JM, Al-Yasser N, Sayari A, Micropor. Mesopor. Mater., 262, 166 (2018)
  57. Wang X, Ma X, Song C, Locke DR, Siefert S, Winans RE, M?llmer J, Lange M, M?ller A, Gl?ser R, Micropor. Mesopor. Mater., 169, 103 (2013)
  58. Wang D, Wang X, Ma X, Fillerup E, Song C, J. Catal. Today, 233, 100 (2014)
  59. Ammendola P, Raganati F, Chirone R, Miccio F, Powder Technol., 373, 446 (2020)
  60. Goel C, Kaur H, Bhunia H, Bajpai PK, J. CO2 Utiliz, 16, 50 (2016)
  61. Loganathan S, Tikmani M, Edubilli S, Mishra A, Chem. Eng. J., 256, 1 (2014)
  62. Álvarez-Gutiérrez N, Gil MV, Rubiera F, Pevida C, Chem. Eng. J., 307, 249 (2017)
  63. Hameed BH, Tan IAW, Ahmad AL, Chem. Eng. J., 144, 235 (2008)
  64. Jana SK, Nishida R, Shindo K, Kugita T, Namba S, Micropor. Mesopor. Mater., 68, 133 (2004)
  65. Rocha JV, Barrera D, Sapag K, Topics Catal., 54, 121 (2011)
  66. Kruk M, Jaroniec M, Sayari A, Micropor. Mesopor. Mater., 35-36, 545 (2000)
  67. Son WJ, Choi JS, Ahn WS, Micropor. Mesopor. Mater., 113, 31 (2008)
  68. Qi G, Wang Y, Estevez L, Duan X, Anako N, Park AHA, Li W, Jones CW, Giannelis EP, Energy Environ. Sci., 4, 444 (2011)
  69. Zhou C, Gao Q, Luo W, Zhou Q, Wang H, Yan C, Duan P, J. Taiwan Inst. Chem. Engineers, 52, 147 (2015)
  70. Wu XW, Ma HW, Zhang LT, Wang FJ, Appl. Surf. Sci., 261, 902 (2012)
  71. Wang Q, Luo J, Zhong Z, Borgna A, Energy Environ. Sci., 4, 42 (2011)
  72. Sepehrian H, Ahmadi SJ, Waqif-Husain S, Faghihian H, Alighanbari H, J. Hazard. Mater., 176, 252 (2010)
  73. Heydari-Gorji A, Sayari A, Chem. Eng. J., 173, 72 (2011)
  74. Wang D, Wang X, Ma X, Fillerup E, Song C, Catal. Today, 233, 100 (2014)
  75. Ge K, Yu Q, Chen S, Shi X, Wang J, Chem. Eng. J., 364, 328 (2019)
  76. Xu X, Song C, Miller BG, Scaroni AW, Ind. Eng. Chem. Res., 44, 8113 (2005)
  77. Belmabkhout Y, Serna R, Sayari A, Adsorption of CO2-Containing Gas Mixtures Over Amine-Bearing Pore-Expanded MCM-41 Silica: Application for Gas Purification (2009).
  78. Liu Q, Shi J, Zheng S, Tao M, He Y, Shi Y, Ind. Eng. Chem. Res., 53, 11677 (2014)
  79. Liu Y, Yu X, Appl. Energy, 211, 1080 (2018)
  80. Heydari-Gorji A, Yong Y, Sayari A, Energy Fuels, 25, 4206 (2011)
  81. Tiwari D, Goel C, Bhunia H, Bajpai PK, Sep. Purif. Technol., 181, 107 (2017)
  82. Conway W, Wang X, Fernandes D, Burns R, Lawrance G, Puxty G, Maeder M, J. Phys. Chem. A, 115, 14340 (2011)
  83. Tlili N, Gr?villot G, Valli?res C, Int. J. Greenhouse Gas Control, 3, 519 (2009)
  84. Zhang Z, Xu M, Wang H, Li Z, Chem. Eng. J., 160, 571 (2010)
  85. Chen B, Ockwig NW, Millward AR, Contreras DS, Yaghi OM, Angew. Chem. Int. Ed. Engl., 44, 4745 (2005)
  86. Millward AR, Yaghi OM, J. Am. Chem. Soc., 127, 17998 (2005)
  87. Llewellyn PL, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, De Weireld G, Chang JS, Hong DY, Hwang YK, Jhung SH, Ferey G, Langmuir, 24, 7245 (2008)
  88. Siriwardane RV, Shen MS, Fisher EP, Poston JA, Energy Fuels, 15, 279 (2001)
  89. Raganati F, Ammendola P, Chirone R, KONA Powder Particle J., 32, 23 (2015)
  90. Ammendola P, Raganati F, Chirone R, Fuel Process. Technol., 134, 494 (2015)
  91. Sch?ny G, Dietrich F, Fuchs J, Pr?ll T, Hofbauer H, Powder Technol., 316, 519 (2017)