- Previous Article
- Next Article
- Table of Contents
Korean Journal of Chemical Engineering, Vol.39, No.3, 798-810, March, 2022
Molecular weight distribution modeling of LDPE in a continuous stirred-tankreactor using coupled deterministic and stochastic approach
E-mail:
A hybrid approach that combines the method of moments and Monte Carlo simulation to predict the
molecular weight distribution of low-density polyethylene for a continuous stirred tank reactor system is proposed. A ‘Block’, which is repeating reaction group, is introduced for the calculation cost-effective simulation. This model called the ‘block Kinetic Monte Carlo’ is ~10 to 32 times faster than Neuhaus’s model. The model can be applied to any steady state system and provide a calculation cost reduction effect, where one reaction is much faster than others, for example, the propagation reaction. Furthermore, we performed a case study on the effects of the system temperature and initiator concentration on the MWD and reaction rate ratio. Based on the simulation results of 180 case studies, we determined a quantitative guideline for the appearance of shoulder, which is a function of the rate ratio of reactions to the propagation reaction.
- Bovey FA, Schilling FC, McCrackin FL, Wagner HL, Macromolecules, 9, 76 (1976)
- Beasley JK, J. Am. Chem. Soc., 75, 6123 (1953)
- Ray WH, J. Macromol. Sci., Rev. Macromol. Chem., 8, 1 (1972)
- Crowley TJ, Choi KY, Ind. Eng. Chem. Res., 36, 1419 (1997)
- Iedema PD, Wulkow M, Hoefsloot HC, Macromolecules, 33, 7173 (2000)
- Son SH, Han JJ, Lee JM, Polymer, 126, 74 (2017)
- Louie BM, Carratt GM, Soong DS, J. Appl. Polym. Sci., 30, 3985 (1985)
- Mikos AG, Takoudis CG, Peppas NA, Macromolecules, 19, 2174 (1986)
- Zhu S, Hamielec AE, Macromolecules, 22, 3093 (1989)
- Zhu S, Hamielec AE, J. Polym. Sci. Part B: Polym. Phys., 32, 929 (1994)
- Shin S, Choi S, Na J, Jung I, Kim MK, Park MJ, Lee WB, Chem. Eng. J., 131829,
- Wells GJ, Ray WH, Macromol. Mater. Eng., 290, 319 (2005)
- Pladis P, Kiparissides CA, Chem. Eng. Sci., 53, 3315 (1998)
- Hutchinson RA, Macromol. Theory Simul., 10, 144 (2001)
- Zhang SX, Ray WH, AIChE J., 43, 1265 (1997)
- Tobita H, J. Polym. Sci., Part B: Polym. Phys., 39, 391 (2001)
- Yaghini N, Iedema PD, Chem. Eng. Sci., 116, 144 (2014)
- Meimaroglou D, Pladis P, Baltsas A, Kiparissides C, Chem. Eng. Sci., 66, 1685 (2011)
- Kim DM, Busch M, Hoefsloot HC, Iedema PD, Chem. Eng. Sci., 59, 699 (2004)
- Kiparissides C, Krallis A, Meimaroglou D, Pladis P, Baltsas A, Chem. Eng. Technol., 33, 1754 (2010)
- Iedema PD, Hoefsloot HC, Macromol. Theory Simul., 10, 855 (2001)
- Kim DM, Iedema PD, Chem. Eng. Sci., 59, 2039 (2004)
- Kim DM, Iedema PD, Chem. Eng. Sci., 63, 2035 (2008)
- Yaghini N, Iedema PD, Chem. Eng. Sci., 130, 310 (2015)
- Gillespie DT, J. Phys. Chem., 81, 2340 (1977)
- Tobita H, Macromol. Theory Simul., 5, 129 (1996)
- Tobita H, Macromol. React. Eng., 7, 181 (2013)
- Tobita H, Macromol. Theory Simul., 23, 182 (2014)
- Rogosic M, Mencer HJ, Gomzi Z, Eur. Polym. J., 32, 1337 (1996)
- Neuhaus E, Herrmann T, Vittorias I, Lilge D, Mannebach G, Gonioukh A, Busch M, Macromol. Theory Simul., 23, 415 (2014)
- Sch?tte C, Wulkow M, Macromol. React. Eng., 4, 562 (2010)
- Eckes D, Busch M, Macromol. Symp., 360, 23 (2016)
- Meimaroglou D, Kiparissides CA, Macromolecules, 43, 5820 (2010)
- Feucht P, Tilger B, Luft G, Chem. Eng. Sci., 40, 1935 (1985)
- Tobita H, Processes, 3, 731 (2015)
- Chien IL, Kan TW, Chen BS, Comput. Chem. Eng., 31, 233 (2007)
- Kotliar AM, J. Polym. Sci., Part A: Gen. Pap., 2, 4303 (1964)
- Krallis A, Pladis P, Kiparissides C, Macromol. Theory Simul., 16, 593 (2007)
- Kolhapure NH, Fox RO, Chem. Eng. Sci., 54, 3233 (1999)
- Marini L, Georgakis C, Chem. Eng. Commun., 30, 361 (1984)