화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.107, 207-214, March, 2022
Quadrature moment simulation of silica nanoparticles aggregation and breakage in chemical mechanical polishing
E-mail:
Chemical mechanical polishing (CMP), a wafer surface planarization method, is critical in the semiconductor industry because uniform and scratch-free processing is required for a highly integrated circuit on the wafer surface. Thus, the prediction of aggregated particle size during CMP helps achieve stable and precise processing during experimental circumstances. Herein, silica nanoparticle aggregation simulation during CMP process-based Quadrature Method of Moments (QMOM) was first described using ANSYS Fluent as a computational fluid dynamics (CFD) tool. Experiments were also implemented in a 10,000 class cleanroom using a CMP polisher actually used in the semiconductor industry. Moreover, a comparison of experimental particle size measured through zeta-potential and particle size analyzer and simulated Sauter mean diameter (D32) showed that the experimental data agreed well with the simulation results.
  1. Achuthan K, Curry J, Lacy M, Campbell D, Babu S, J. Electron. Mater., 25, 1628 (1996)
  2. Rosales-Yeomans D, Doi T, Kinoshita M, Suzuki T, Philipossian A, J. Electrochem. Soc., 152, G62 (2004)
  3. Luo J, Dornfeld DA, IEEE Trans. Semicond. Manuf., 14, 112 (2001)
  4. Ali I, Roy SR, Shinn G, Solid State Technol., 37, 63 (1994)
  5. Bastawros A, Chandra A, Guo Y, Yan B, J. Electron. Mater., 31, 1022 (2002)
  6. Dejule R, Semicond. Int., 21, 5 (1998)
  7. Evans C, Paul E, Dornfeld D, Lucca D, Byrne G, Tricard M, Klocke F, Dambon O, Mullany B, CIRP Annals, 52, 611 (2003)
  8. Komanduri R, CIRP Ann., 45, 509 (1996)
  9. Liang H, Kaufman F, Sevilla R, Anjur S, Wear, 211, 271 (1997)
  10. Luo J, Dornfeld DA, IEEE Trans. Semicond. Manuf., 16, 469 (2003)
  11. Zhang Z, Yu L, Liu W, Song Z, Appl. Surf. Sci., 256, 3856 (2010)
  12. Oh MH, Nho JS, Cho SB, Lee JS, Singh RK, Powder Technol., 206, 239 (2011)
  13. Wang L, Zhang K, Song Z, Feng S, Appl. Surf. Sci., 253, 4951 (2007)
  14. Chen PL, Chen JH, Tsai MS, Dai BT, Yeh CF, Microelectron. Eng., 75, 352 (2004)
  15. Armini S, Whelan C, Moinpour M, Maex K, J. Electrochem. Soc., 155, H401 (2008)
  16. Armini S, Whelan CM, Maex K, Hernandez JL, Moinpour M, J. Electrochem. Soc., 154, H667 (2007)
  17. Nguyen N, Tian Y, Zhong ZW, Int. J. Adv. Manuf. Technol., 75, 97 (2014)
  18. Sung IH, Kim HJ, Yeo CD, Appl. Surf. Sci., 258, 8298 (2012)
  19. Khan M, Hussain M, Mansourpour Z, Mostoufi N, Ghasem N, Abdullah E, J. Ind. Eng. Chem., 20, 3919 (2014)
  20. Che Y, Tian Z, Liu Z, Zhang R, Gao Y, Zou E et al., Powder Technol., 286, 107 (2015)
  21. Yuan C, Laurent F, Fox R, J. Aerosol Sci., 51, 1 (2012)
  22. Petitti M, Vanni M, Marchisio DL, Buffo A, Podenzani F, Chem. Eng. J., 228, 1182 (2013)
  23. Marchisio DL, Fox RO, J. Aerosol Sci., 36, 43 (2005)
  24. Grosch R, Briesen H, Marquardt W, Wulkow M, AIChE J., 53, 207 (2007)
  25. Hulburt HM, Katz S, Chem. Eng. Sci., 19, 555 (1964)
  26. Marchisio DL, Vigil RD, Fox RO, Chem. Eng. Sci., 58, 3337 (2003)
  27. McGraw R, Aerosol Sci. Technol., 27, 255 (1997)
  28. Li D, Li Z, Gao Z, Chin. J. Chem. Eng., 27, 483 (2019)
  29. Dale AL, Lowry GV, Casman EA, Environ. Sci. Nano, 4, 89 (2017)
  30. Guichard R, Belut E, J. Aerosol Sci., 104, 16 (2017)
  31. Abdelfatah E, Pournik M et al., SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, SPE, Jakarta, Indonesia, 2017.
  32. Abdelfatah E, Pournik M, Petrol. Petrochem. Eng. J., 2, 1 (2018)
  33. Li QY, Wang XZ, Crystals, 11, 144 (2021)
  34. Randolph A, Theory of particulate processes: analysis and techniques of continuous crystallization, Elsevier, 2012.
  35. Gordon RG, J. Math. Phys., 9, 655 (1968)
  36. Smoluchowski M, Zeitschrift für Physikalische Chemie, 19, 129 (1917)
  37. Adachi Y, Stuart MC, Fokkink R, J. Colloid Interface Sci., 165, 310 (1994)
  38. Luo H, Svendsen HF, AIChE J., 42, 1225 (1996)
  39. Kramer TA, Clark MM, J. Colloid Interface Sci., 216, 116 (1999)
  40. Wojcik JA, Jones AG, Comput. Chem. Eng., 22, 535 (1998)
  41. Pandya J, Spielman L, J. Colloid Interface Sci., 90, 517 (1982)
  42. Peng S, Williams RA, J. Colloid Interface Sci., 166, 321 (1994)
  43. Meva FEA, Ntoumba AA, Kedi PBE, Tchoumbi E, Schmitz A, Schmolke L, Klopotowski M, Moll B, Kokcam-Demir U, Mpondo EAM, J. Mater. Res. Technol., 8, 1991 (2019)
  44. Domingos RF, Baalousha MA, Ju-Nam Y, Reid MM, Tufenkji N, Lead JR et al., Environ. Sci. Technol., 43, 7277 (2009)
  45. Anthony LS, Perumal V, Mohamed NM, Balakrishnan SR, Gopinath SC, Characterization of synthesized nanoparticles for medical devices: current techniques and recent advances, Elsevier, pp. 223-245, 2021.
  46. Shin C, Choi J, Kwak D, Kim J, Yang J, Chae SK et al., ECS J. Solid State Sci. Technol., 8, 3195 (2019)
  47. Cumberland SA, Lead JR, J. Chromatogr. A, 1216, 9099 (2009)
  48. Saville SL, Woodward RC, House MJ, Tokarev A, Hammers J,Qi B et al., Nanoscale, 5, 2152 (2013)
  49. Montes-Burgos I, Walczyk D, Hole P, Smith J, Lynch I, Dawson K, J. Nanopart. Res., 12, 47 (2010)
  50. Coetsier C, Testa F, Carretier E, Ennahali M, Laborie B, Mouton-Arnaud C,et al., Appl. Surf. Sci., 257, 6163 (2011)
  51. Santos JL, Li Y, Culver HR, Michael SY, Herrera-Alonso M, Chem. Commun., 50, 15045 (2014)
  52. Pinto G, Baptista A, Silva F, Porteiro J, Miguez J, Alexandre R, Materials, 14, 668 (2021)